Bubble

2016_B(Alternate words: Beefcake.

…well, okay. I said to myself that I would keep all the alternate words that I don’t use first time through for potential later use, but with the best will in the world, I don’t think I can do anything with that one. Sorry, o beefcake-desirer!)

The path towards today’s helmet style grew out of a number of converging interests. Early Spaceflight Initiative helmets required more bulky hardware than modern compact systems, for example, which consumed and obscured much of the rear volume. Later industrial vacuum suits had the disadvantage of holding the wearer’s head in a forward-facing position, due to cushioning and ancillary equipment, restricting the wearer’s field of view. And then, of course, there were the various RFPs from the nascent Imperial Navy, and specifically the requests from the Flight Operations representatives, who were most insistent that while they were willing if reluctant to concede the impracticability of their traditional silk scarves as a vacuum suit accessory, relegating them to the role of dress uniform only, and even to acknowledge the uselessness of their equally traditional aviator goggles, they would not under any circumstances give up their leather-and-fur flight helmets.

(They had, after all, been presented upon graduation of every Pilot Officer since the first foundation of the Imperial Flying Corps. One might as well, in their view, expect a legionary to go into battle without his sword – or, as Military Service slang prefers to put it in either case – ‘stark ruddy naked’.)

And so we come to the modern bubble helmet, a spherical dome of smartglass sandwiched between high-impact sapphiroid. The outermost layer is gold-anodized, to block glare and harmful radiation (while in theory the smartglass could provide this filtration, the gold anodization is fail-safe, functioning even if suit power or data systems are malfunctioning), and designed to intrinsically shed fluids, dust, and electrical charge. The smartglass is capable of acting as an infinitely configurable variable-filter and information display surface, with HUD and augmented reality functions including night-vision and optical zoom. The view provided is unobstructed all around – even beyond the typical 100 degree head rotation – with the exception of two coin-sized spots above the eyeline and to each side where the headlight/camera modules are mounted. A third light/camera module, rear-mounted, provides a projectable rear view. These modules also include miniature trigraphic projectors, enabling the projection of status, communicative, and affective symbols over the wearer’s head.

The helmet is pressurized with the normal canned life support blend of oxygen and inert-mix, to standard ship’s pressure. (Since modern skinsuits incorporate MEMS-based respiration assistance, it is no longer necessary to use high-oxygen breathing mixes.) This is controlled by the systems torc at the base of the helmet, which locks onto the attachment ring/neck dam at the neck of the vacuum suit (itself connected to many fibers running throughout the suit fabric to prevent accidental detachment). Light nanofluid cushioning that surrounds the neck once the helmet is donned provides additional neck protection and stability.

The primary purpose of the systems torc, apart from this connection, is the containment of the suit’s data systems and mesh communications suite. (Its location permits it direct interface with its wearer’s back-neck laser-port, although an auxiliary manual keypad can be connected and mounted on an arm of the suit if desired.) It also contains a miniature high-pressure oxygen tank and rebreather/dehumidifier system as a final hour’s emergency life-support supply. The torc also contains the connectors for the PLSS backpack, including those which permit water, other beverages, food pastes, and pharmaceuticals to be dispensed to the wearer through a deployable pipette, or additionally in the case of pharmaceuticals, through an autoinjector into a neck vein.

Communications can be provided directly by the torc, either via the laser-port interface or via miniaturized microphones and loudspeakers built into the torc surface. Alternately, many wearers prefer the use of a simple headset worn under the helmet, which connects to the torc using local mesh radio.

– A History of Space Hardware, Orbital Education Initiative

One thought on “Bubble

Comments are closed.