A Sticky Solution




A prohibitive constraint on the use of conventional weapons in the anti-satellite (ASAT) role is their tendency to create debris through a variety of paths: direct ablation, spallation or fragmentation debris, warhead shrapnel, non-intercepting ordnance, and so forth.

The accumulation of such debris beyond a chaotically variable critical point Рeasily surpassed during military escalation, per Orbital Hazards in Simulated Great Power Escalation Scenarios (Oricalcios, Efiathe, and Cylass̩, 2074) Рposes a long-term hazard to civilization by inducing a cascade catastrophe, a rapid chain multiplication in debris count likely to render the orbital bands involved non-viable in the long term.

TAR BABY attempts to avert this by developing a specialized non-fragmentation ASAT weapon.

Specifically, we propose a dedicated ASAT warhead designed for compatibility with the Firehawk surface-to-orbit missile system (selected for its multiple-burn capability). Upon closing with the target satellite, this warhead deploys a sphere of viscous adhesive at its nose, formulated to remain effective in vacuum conditions for the duration of the impact event and to retain its shape via surface tension.

It is believed that this mechanism should allow a TAR BABY warhead to achieve a hard connect with the target satellite with minimal uncaptured fragmentation. Embedding within the adhesive body should in itself cause significant disruption to the operation of the target, but for maximal effect, after the adhesive sphere has set (either by passage of time or injection of a catalyst), the multiple-burn capability of the Firehawk can be used to perform a controlled deorbit and destruction of the captured satellite.

For further details of our proposal, please see the enclosed technical documentation.

Submitted for your consideration,

Vidal Amnestrianos

for and on behalf of

Firefly Aerospace, ICC