Lumenna-Súnáris System (11): Raziké

I/10. Raziké

Class: Alessán
Orbit (period): 32.4 au (184.424 T-years/67,362.71 T-days)
Orbit (ecc.): 0.06
Radius: 37,668 miles
Mass: 1.01 x 1027 kg
Density: 1.08 g/cm3
Cloud-top gravity: 1.86 g

Axial tilt: 4.1°
Rotation period: 12.1 T-days

Black-body temperature: 46 K

Satellites: 4 close moonlets (including Hyníne). 2 major moons (doublet). 6 eccentric moons.

Lumenna’s outer ice giant, a brooding dark blue-green, is a backwater in an otherwise busy system. Very few sophs travel as far out into the system as Raziké and its moons, beyond even the three stargates in the Lumenna sub-system (orbiting in a stable rosette at 24 au), trans-solar transit traffic excepted. There’s not much reason to, the options for doing so are limited, and the light-lag is extraordinarily inconvenient.

There are three principal qualities that bring sophs here: cold, ice, and privacy. Combine as you will, and you see a region whose inhabitants – if we discount the Distant Early Warning stations operated by the IN – are a few batch-mode computronium nodes, deep time data vaults, comet herders and ice miners, and the scattered communities and hermitages of those wanting to get a long way away from it all. Total population is below a quarter-million sophs.

I/10/a. Múrazór and I/10/b. Múrnamár

Class: Gelidian
Barycenter orbit (period): 1.356 million miles (10.17 T-days)
Barycenter orbit (ecc.): 0.04
Total Mass: 1.42 x 1022 kg
Density: 1.71 g/cm3

Black-body temperature: 46 K
Surface temperature (avg.): 42 K

Atmospheres: Trace. Primarily carbon dioxide and nitrogen.

Raziké’s major moons are a doublet; a pair of ice bodies orbiting around their common barycenter, which in turn orbits Raziké proper. The statistics given above are for the Múrazór-Múrnamár pair as a whole; the mass of the doublet is split two-thirds/one-third in Múrazór’s favor.

Múrazór houses much of the local population, in the form of an IN base for the outer-system picket, a scientific research station, and the Comet-Herder’s Gather, a meeting place and floating market for the population of the sub-system and nearby Senna’s Belt.

Múrnamár, by contrast, is almost untouched.

Lumenna-Súnáris System (10): Iälessá

(I’d been meaning to get back to this series for quite some time, but never quite managed it. Until now, seeing as a generous reader on the Discord offered to make me a delta-v map for the System, which rather spurred me on to resume the project.)


I/9. Iälessá

Class: Alessán
Orbit (period): 23.17 au (40,737 T-days/111.529 T-years)
Orbit (ecc.): 0.01 (however, orbital inclination is 22° from the ecliptic)
Radius: 16,833 miles
Mass: 1.194 x 1026 kg
Density: 1.44 g/cm3
Cloud-top gravity: 1.11 g

Axial tilt: 27.1°
Rotation period: 2.13 T-days (tide-locked)

Black-body temperature: 54 K

Satellites: 7 close moonlets, ring. 5 major moons. 4 eccentric moons.

A swirled marble of blues pale and dark, Iälessá is the inner of Lumenna’s twin ice giants. Its somewhat unusual coloration is believed to be the result of a combination of factors: its ammonia-rich atmosphere, the unusually high quantity of silicate dust in that same atmosphere (believed to be a product of whatever primordial event was responsible for the unusual inclination of its orbit), the primitive microbial life dwelling in its upper layers, and the unusual states of matter found near its core.

A small number of aerostats dwell in the upper atmosphere of Iälessá, primarily concerning themselves with research into the history and lifeforms of the planet, and its small gas-mining industry. The civilian population outside the major moons primarily dwells here, and across its various moonlets. Outside the Iälessá sub-system itself, though, its libration points with Lumenna contain a large number of polises and other processing facilities, taking advantage of the low-temperature environment.

Meanwhile, the sub-system itself, inasmuch as it consists of a relatively small ice giant with a system of large moons, presents the unusual sight of an astronomical arrangement firmly in gravity’s grip, as everything is tide-locked to everything else!

I/9/a. Saeríändrá

Class: Thiorastan (high-silicate)
Orbit (period): 134,664 miles (0.921 T-days)
Orbit (ecc.): 0.01
Radius: 786 miles
Mass: 4.055 x 1022 kg
Density: 4.798 g/cm3
Surface gravity: 0.17 g

Axial tilt: 4.2°
Rotation period: 0.921 T-days (tide-locked)

Black-body temperature: 54 K
Surface temperature (avg.): 65 K

Atmosphere: Thin (0.1 atm), primarily sulphurous, with heavy ash clouds.
Hydrographic coverage: 0% (other than short-lived cooling glass lakes)

Saeríändrá, the innermost major moon of Iälessá, is an anomalous thiorastan-class moon in many ways, primarily because of the high percentage of silicon and silicate compounds in its makeup, similar to that of its parent planet. It is also anomalously warm, due to the high degree of tidal flexing caused by its proximity to Iälessá, along with frequent close passed by the moonlets with which it is in resonance and its peripatetic moonmoons.

This tidal flexing also drives a highly active geology, including many large volcanoes. It is primarily this volcanic activity that provides Saeríändrá with its thin atmosphere and the thick high-altitude ash clouds which retain the moon’s heat, although the moon’s mass is entirely insufficient to retain its atmosphere, leaving a long pseudo-cometary tail trailing it in its orbit.

CAUTION: Travelers to or near Saeríändrá should be advised that near-Saeríändrá space to trailing of the moon is rich in particulate manner which may score hulls and damage delicate equipment. Avoidance of this zone is recommended.

Saeríändrá’s volcanoes are rare examples of vitreovolcanism, due to its silicon-rich crust; the lava they spew onto the moon’s surface takes the form of a variety of silicate glasses. Ongoing volcanic activity over millennia has resculpted the majority of Saeríändrá’s surface into layers of sculpted glass, from the milky mountains, ancient frozen eruptions etched by wind-driven ash, to the lowland glasslakes, swirled in many colors from impurities within, where glass lava has settled to its natural level before freezing in place.

Saeríändrá is a provider of fissionables to Cinquané and other parts of the outer system, via the Empire Nucleonics, ICC mining station in the north extracting thorium and uranium salts from the brown-green glasslakes of the area. Habitation is concentrated in the southern hemisphere, which houses a large number of thriving galari colonies, along with the famed Crystal Lake Dome resort.

I/9/b. Cinquané Avincta

Class: Eugalínic
Orbit (period): 185,163 miles (1.49 T-days)
Orbit (ecc.): 0.12
Radius: 1,227 miles
Mass: 1.123 x 1023 kg
Density: 3.47 g/cm3
Surface gravity: 0.2 g

Axial tilt: 3.1°
Rotation period: 1.49 T-days (tide-locked)

Black-body temperature: 54 K
Surface temperature (avg.): 37 K

Atmosphere: None.
Hydrographic coverage: 0%

A moon trapped in the quiescent phase of the galínic cycle by its lower mass and lack of atmospheric retention, Cinquané Avincta is a frozen world, its surfaces dominated by ice, carbon dunes, hydrocarbon tars, and tholins. As its slightly higher density indicates, pockets of heavier elements are present within its mass, and as such, it serves principally as a mining colony of the Cinquané Commonwealth, of which it is a territorial annex.

However, its surface is also heavily and repeatedly cracked by the high tidal forces to which it is subjected, and thus riven with mazes of chasms and other similar formations. As such, it has a thriving secondary tourist industry in extreme sports, including vacuum spelunking, bridge diving, and high-velocity flight in and among the narrows.

(Let us skip discretely past the tertiary industry of scavenging the remains of extreme sportssophs from the bottom of said chasms.)

I/9/c. Cinquané

Class: Galínilacustric
Orbit (period): 235,662 miles (2.13 T-days)
Orbit (ecc.): 0.09
Radius: 2,850 miles
Mass: 1.248 x 1024 kg
Density: 3.09 g/cm3
Surface gravity: 0.4 g

Axial tilt: 5.4°
Rotation period: 2.13 T-days (tide-locked)

Black-body temperature: 54 K
Surface temperature (avg.): 58 K

Atmosphere: 2.16 atm; primarily nitrogen-methane.
Hydrographic coverage: 70% (primarily ethane, with misc. hydrocarbon admixture)

Galíné may be the archetypal example of the galínic planetary classes, but Cinquané was the first. A world of ice, carbon dunes, and ethane oceans lapping at tholin beaches, all beneath a smoggy red-orange methane sky, Cinquané began as a roughneck industrial colony producing hydrocarbon-based products for the ecopoesis of Talentar and space industry elsewhere in the system, and grew from those roots into the homeworld of the modern Cinquané Commonwealth, the largest and most prosperous polity of the outer system, however Inlétanós’s Ring Imperium might contest the claim. Over three billion cold-loving sophs dwell in the domes scattered across Cinquané’s dusty plains and shores, along with the open ciseflish settlements, the largest being the planetary capital, Yíhanad, and the jack city of Newfalls.

Both Biolith Chemical Produces, ICC, and Industrial Liquids, ICC, maintain large extraction and bactry facilities here, clustered around the industrial cities along the shore of the southern polar ocean.

Other notable planetographic features include the Hump, the permanent 330′ high tide beneath the noon pole (here defined as the planetward synchronous pole, rather than the sunward one).

I/9/d. Cinquané Tevinté

Class: Eugalínic
Orbit (period): 370,326 miles (4.10 T-days)
Orbit (ecc.): 0.07
Radius: 1,663 miles
Mass: 2.126 x 1023 kg
Density: 2.65 g/cm3
Surface gravity: 0.2 g

Axial tilt: 1.3°
Rotation period: 4.10 T-days (tide-locked)

Black-body temperature: 54 K
Surface temperature (avg.): 35 K

Atmosphere: None.
Hydrographic coverage: 0%

Similar in most ways to Cinquané Avincta, but lacking the heavier elements, Cinquané Tevinté is also a territorial annex of the Cinquané Commonwealth, serving as a de facto suburb colony for those preferring greater privacy.

One pseudo-island (i.e., area of raised ground within a tar lake) on Cinquané Tevinté holds a mothballed manufacturing facility, that in which Ring Dynamics, ICC produced the first stargate hulls before the construction of the modern standardized weylforge, and another holds a naval depot for the IN’s outer-system picket.

I/9/e. Alétel

Class:
Orbit (period): 420,825 miles (5.07 T-days)
Orbit (ecc.): 0.13
Radius: 2,336 miles
Mass: 5.154 x 103 kg
Density: 2.32 g/cm3
Surface gravity: 0.24 g

Axial tilt: 4.6°
Rotation period: 5.07 T-days (tide-locked)

Black-body temperature: 54 K
Surface temperature (avg.): 52 K

Atmosphere: 0.16 atm; nitrogen-methane.
Hydrographic coverage: 0%

Another otherwise undistinguished iceball, the moon is perhaps most famous for housing Uncertainty Dome, Bright Shadow, ICC’s chief domestic tanglebit manufacturing facility, and, historically, for the Alétel Equatorial Collider.

Ringing the moon’s equator, the Equatorial Collider, at 14,675 miles in circumference, was the largest particle accelerator ever constructed until the much later advent of the Déirae Collider, and enabled new and profound discoveries in high-energy physics.

The Worlds Revealed

In partial apology for the lack of artwork thus far, I bring you a map of the Associated Worlds, constellation by constellation!

[The Associated Worlds]

(Click through for the full version. Caution: it’s a big image, 3049 x 3030.)

Key-wise, gold constellations represent the Imperial Core and Fringe, blue the mainstream Associated Worlds, purple the Expansion Regions, and green the Periphery. Red constellations represent the off-the-edge-of-the-map places, namely the Leviathan Consciousness and the connected constellations of the Voniensa Republic. Thin lines are interconstellation stargate connections; thick lines are special high-capacity arterials.

The major connected sets of those are the Worlds’ major trade routes: in green, the Lethíäza Trade Spine; in red, the Mercantile Corridor; and a rough circle in black at the edge of the major Worlds, except where it shares a link with the Spine between “58” and the Azure Fade, the Circumferential, or Golden Band.

I’ve annotated the approximate locations of the major powers, and also (in small text) of a few minor powers that have been mentioned and about which there might be curiosity.

(Oh, and when it comes to those constellations currently numbered – the aforementioned “58”, “E76”, and “P13”, et. al.? Apart from a couple of potential spoilers, that’s my innovation space/creative breathing room. Pay no attention to the Doylist explanation behind the curtain.)

 

Lumenna-Súnáris System (9): Inlétanós

I/8. Inlétanós

Class: Melíeréan
Orbit (period): 14.48 au (20,126 T-days/55.14 T-years)
Orbit (ecc.): 0.2
Radius: 47,449 miles
Mass: 2.968 x 1027 kg
Density: 1.59 g/cm3
Cloud-top gravity: 6.69 g

Axial tilt: 16.4°
Rotation period: 11.8 T-hours

Black-body temperature: 69 K

Satellites: 12 close moonlets, spectacular ring. 1 major moon. 5 eccentric moons.

A streaky sphere of pale yellow swirled with green, Inlétanós is the outer system’s kinder, gentler gas giant, best known for its truly spectacular ring system visible from anywhere in the system.

It is a relatively quiet backwater in the future, albeit occasionally used for gravity assist – its lack of major moons didn’t encourage much development here, and being both more distant and having a higher gravity did not encourage more than perfunctory gas mining. Ice mining, on the other hand, was briefly a local industry before the Outer Planets Aesthetic Collective bought the property rights to the ring and stopped it.

Its major population in the future is spread across habitats typically built into its shepherd moons and many other moonlets, both residential and tourist. It does, after all, have some of the most spectacular views in the System.

I/8/a. Lórachan

Class: Thiorastan
Orbit (period): 567,844 miles (1.603 T-days)
Orbit (ecc.): 0.01
Radius: 491.8 miles
Mass: 5.61 x 1021 kg
Density: 2.76 g/cm3
Surface gravity: 0.062 g

Axial tilt: 4.8°
Rotation period: 1.603 T-days (tide-locked)

Black-body temperature: 69 K
Surface temperature (avg.): 53 K

Atmosphere: None.
Hydrographic coverage: 0% (except short-lived sulphur pools)

Lórachan is another Io-like moon; not as radiation-thrashed and flux-tube-equipped as Kerasta, both due to its wider orbit and to the relatively benign magnetosphere of Inlétanós vis-a-vis Melíeré, but the tidal effects are still great enough to produce all the sulphur geysers and magmatic outpourings that one could wish for, if not quite as violent as its inner cousin.

Without a powerful flux tube to draw upon, Lórachan has not attracted the same power generation-seekers that Kerasta had, and settlers in the Inlétanós sub-system have generally chosen the more benign environment of the moonlets; minor resource harvesting bases and scientific research are about all that Lórachan has attracted.

 

Lumenna-Súnáris System (8): Melíeré

I/7. Melíeré

Class: Melíeréan
Orbit (period): 7.24 au (7,116 T-days/19.5 T-years)
Orbit (ecc.): 0.12
Radius: 38,372 miles
Mass: 9.81 x 1027 kg
Density: 3.08 g/cm3
Cloud-top gravity: 5.43 g

Axial tilt: 22°
Rotation period: 14.0 T-hours

Black-body temperature: 98 K

Satellites: 9 close moonlets, ring. 3 major moons. 2 eccentric moons.

Melíeré is exactly what it looks like: like its closest counterpart, Jupiter, it’s a hydrogen-helium mesogiant with the traditional turbulent gaseous envelope around a whole bunch of metallic liquid hydrogen around a core. It’s a big, brawling, orange-red, yellow-streaked behemoth of a planet that successfully dominates the gateway to the outer system. Unlike Jupiter, it doesn’t have a single, distinguishing “Great Red Spot”, but it is known for enormous storm cells, the linaurrauken, which come and go upon its surface like pale blotches.

In the future, it becomes very significant in the outer system, first as a gravity assist, but also due to the plentiful energy resources available in the system and its relative proximity, in gravity well terms, to the e’Luminiarien Belt. It also acquires the families of gas mining stations common to major gas giants in the Empire and the Empire Nucleonics station for bulk-producing metastable metallic hydrogen.

It has a ring – not a spectacular Saturnine ring, but one which you can see from anywhere in the system, and a family of moons, of which three are major (I’m going to skip lightly over the moonlets and sub-moonlets at this time) and could be considered the equivalent of the Galilean moons: Kerasta, Isimír, and Cysperia:

I/7/a. Kerasta

Class: Thiorastan
Orbit (period):
383,389 miles (0.489 T-days)
Orbit (ecc.):
 0.02
Radius: 522.7 miles
Mass:
 8.809 x 1021 kg
Density: 3.53 g/cm3
Surface gravity: 0.085 g

Axial tilt: 1.40°
Rotation period: 0.495 T-days (tide-locked)

Black-body temperature: 98 K
Surface temperature (avg.): 75 K

Atmosphere: None.
Hydrographic coverage: 0% (unless you count short-lived sulphur pools)

Kerasta is very like Sol System’s Io: a seething, wracked sulphurous hellscape of tidally heated tectonic and volcanic fury. Expect sulphur geysers, molten rock, and general no fun on the surface here, and needless to say, the given surface temperature is for the parts that aren’t currently buried in the middle of the latest eruption. And then there’s the radiation, because just like Io, it has a flux tube.

Popular future activities in the region of Kerasta include some minor resource harvesting, tapping power for local activities out of the Kerastan flux tube, burying things that you’re very unlikely to want to see again, and types of extreme sports that would be considered pathologically idiotic for anyone who didn’t have a backup.

I/7/b. Isimír

Class: Inachian
Orbit (period):
613,423 miles (0.990 T-days)
Orbit (ecc.):
 0.01
Radius: 716.5 miles
Mass:
 1.525 x 1022 kg
Density: 2.37 g/cm3
Surface gravity: 0.078 g

Axial tilt: 0.29°
Rotation period: 0.990 T-days (tide-locked)

Black-body temperature: 98 K
Surface temperature (avg.): 84 K

Atmosphere: None.
Hydrographic coverage: 0% (externally)

Isimír’s surface is generally hostile, since Isimír has no magnetosphere worth speaking of, and as such its surface is routinely bombarded with horrendous amounts of radiation. It’s also not terribly interesting, being – in its essentials – one very large sheet of ice with occasional cryovolcanism when the crust is cracked by tidal forces.

The ocean beneath the ice, though…

Isimír has a lot of tidal activity keeping it warm, an order of magnitude more than even Kerasta. Between that and warm hydrothermal upwellings from its core, the Nighted Ocean of Isimír has long since given rise to its own autochthonous life, tiny plankton- and coral-analogues that thrive in the icy darkness.

In the future, there’ll be great colony cities here at the bottom of shafts through the crust, clinging to the bottom of the icy crust, and an ecosystem which is not, technically, the result of an ecopoesis project – it’s the result of artistic assistance to evolution, introducing new lifeforms designed based on the biochemistry and potential of Isimír’s native life.

I/7/c. Cysperia

Class: Cysperian
Orbit (period):
920,134 miles (1.819 T-days)
Orbit (ecc.):
 0.01
Radius: 1,391 miles
Mass:
 1.250 x 1023 kg
Density: 2.65 g/cm3
Surface gravity: 0.169 g

Axial tilt: 1.12°
Rotation period: 1.819 T-days (tide-locked)

Black-body temperature: 98 K
Surface temperature (avg.): 103 K

Atmosphere: Thin nitrogen-methane atmosphere.
Atmospheric pressure (sfc.): 0.21 atm
Hydrographic coverage: 30% (thin hydrocarbon lakes)

Cysperia is the outermost of the major moons, with a small iron core – enough to give it a mild magnetic field and some protection from the radiation environment – and a mantle of mixed rock, ice, and silicate clays above its own briny ocean (this one, alas, lifeless).

Slightly more hospitable than its inner neighbors, Cysperia is both the future focus of most colonization efforts in the Melíeré sub-system, in partially-buried dome cities to shield from the radiation, and the gravity anchor for the majority of its habitats, other than those built into the lesser moons.

 

Lumenna-Súnáris System (7): e’Luminarien

I/6/n. e’Luminarien (“The Belt”)

Class: Asteroid belt
Orbit: 2.24 au (avg.)
Orbit (ecc.): varies, mostly under 0.25

Blackbody temp.: 176 K (avg.)

Next up, dividing the inner more-or-less rocky planets from the outer gas giants, and scattered over a much bigger area of space than that average suggests, we have the e’Luminiarien (approximately translated “the little traveler’s lights”).

You want rocks? We got rocks. Lots and lots and lots of rocks. Metal-rich rocks. Silicate rocks. Carbonaceous rocks. Icy rocks. Just pick how far you go into the belt by which kind you want to end up with, and there’re all the rocks you could ever want.

And that’s the belt. Naturally, in the future, there are mining operations and stations ranging from the massive (“Andir Drift: Gateway to the Belt”) to the tiny (“Jini’s Oxygen Shack”) scattered all over the place, by the thousands if not tens of thousands.

Here are three of the most notable big ones:

1 Andir

1 Andir is The Big Asteroid That Isn’t, Except By Courtesy. Technically, it’s a Andirian-class geopassive planetesimal, or what we’d call a dwarf planet, but since it’s sitting right smack in the middle of an asteroid belt in all its hundreds-of-miles-across glory, it’s an asteroid by courtesy.

And as the biggest thing out there, in the future, it’s the administrative, commercial, and population center of the belt. Andir Drift, which grows to take up much of its volume, is a hollowed-out beehive habitat that’s got more docks, cageworks, factories, malls, homes, parks, bars, etc., etc., etc., hanging off it than most of the rest of the e’Luminiarien put together, is the administrative capital of the region, and is probably the one place you can be pretty sure every resident of the belt has visited.

But don’t call it a planet. The locals hate that.

6 Mélciö

6 Mélciö, which is a partially differentiated metallic asteroid similar to Vesta, is operated by a number of loosely federated scientific research stations, gathered there partly by unique facilities (the combination of minimal gravity and heavy shielding available by those willing to use the core lab, for example), and partly because of the number of very important breakthroughs that have been made there over the years.

Lots of people hoping that brilliance will rub off on them, in short.

32 Avénan

A carbonaceous asteroid nearer the outer edge of the e’Luminiarien, 32 Avénan and the smaller cohorts set in orbit around it are technically Imperial Navy Fleet Station Avénan. This used to be the Prime Base for the whole damn Fleet back in the day, before stargates were invented and the IN moved as a whole to Palaxias System, and it’s still where the First Capital Flotilla bases out of.

It’s also rather more open to public viewing than most IN bases because of its great historical importance.  It’s where the Consolidation ended and the Aeon-Long Peace began, for a start. It’s where the Talentar Revolt was negotiated to a successful conclusion, for another. As such, it’s also the headquarters and face of the Admiralty’s sophont relations “flotilla”.

 

 

Lumenna-Súnáris System (6): Talentar

I/5. Talentar

Class: Eutalentic
Orbit (period): 1.49 au (664.3 T-days)
Orbit (ecc.): 0.03
Radius: 2,137 miles
Mass: 9.4 x 1023 kg
Density: 5.51 g/cm3
Surface gravity: 0.54 g

Axial tilt: 26.1°
Rotation period: 23.5 T-hours

Black-body temperature: 216 K
Surface temperature (avg.): 230 K

Atmosphere: Primarily CO2, some nitrogen, trace components (pre-ecopoesis).
Atmospheric pressure (sfc.): 0.21 atm (pre-ecopoesis)
Hydrographic coverage: 0% (pre-ecopoesis)

Satellites: 3 moonlets.

So, here we are, next world of the system: Talentar. It’s eutalentic, which is the fancy IGS classification term for “Mars-like”: geologically quiescent, cold, and dry, with thin, mostly-CO2 atmospheres. And it’s very much like that: it could be Mars’s twin.

Which naturally made it the immediate best prospect for a colony and then for ecopoesis, much like, say, Mars – which meant Project Copperfall, followed by Project Redblossom. This is why so many of the figures here are given as “pre-ecopoesis”.

Prominent features visible at this time include Talarí Mons, a large shield volcano near the equator that became the base for the orbital elevator, and the Ashen Planitia from which it rises; Rel!in Crater, whose distinctive shape made it the basis of the zero meridian; the large southern polar depression that eventually became the Meridional Sea; Kirinal Planum, the large plain north of said depression that became a large expanse of “Talentar prairie”; the Five Valles, five large canyons in a claw formation, none as individually large as the Vallis Marineris but which together are a hell of a lot of chasm; the future site of Quinjano Dome, the planetary capital where the chasms come together; Lorai Vallis, site of a famous military cock-up in the Grand Colonial Charlie Foxtrot; and so forth…

And now, the satellites. All figures given for these are pre-ecopoesis, because the ecopoesis involved moving them…

I/5/a. Móstal

Class: Aggregate
Orbit (period):
6,294 miles (2.91 T-hours)
Orbit (ecc.):
0.0
Radius: 6.33 miles
Mass:
 1.4429 x 1016 kg
Density: 3.254 g/cm3
Surface gravity: 0.0009 g

Axial tilt: 0.01°
Rotation period: 3.56 T-hours

Black-body temperature: 216 K
Surface temperature (avg.): 209 K

Atmosphere: None.
Hydrographic coverage: 0%

As its planetary class indicates, Talentar’s innermost moon is… a rubble pile. And as its orbit indicates, one that is probably going to break up rather messily if untouched for the next few million years.

What that means in turn is that Móstal, for practical purposes, consists of a flag and some radio beacons and some fancy netting to keep it together when they had to move it to keep it out of the way of the orbital elevator…

I/5/b. Víërtal

Class: Silicaceous
Orbit (period):
12,740 miles (7.27 T-hours)
Orbit (ecc.):
0.0
Radius:
4.784 miles
Mass:
 7.6325 x 1015 kg
Density: 4.08 g/cm3
Surface gravity: 0.0008 g

Axial tilt: 0.02°
Rotation period: 7.88 T-hours

Black-body temperature: 216 K
Surface temperature (avg.): 209 K

Atmosphere: None.
Hydrographic coverage: 0%

Víërtal, by contrast, is a bit more solid. It’s an actual silicaceous asteroid, look!

Its history has mostly been quiet: due to its solidity and its convenient altitude and habit of whipping around Talentar a good three times every day, it made a convenient base during the initial colonization. It still houses domes into much later eras, notably including the local space-traffic monitoring and defense systems, but it is, for the most part, a backwater.

It also had to be moved in order to build the orbital elevator.

I/5/c. Avétal

Class: Chondraceous
Orbit (period): 26,905 miles (22.30 T-hours)
Orbit (ecc.):
0.0
Radius:
3.87 miles
Mass:
 1.9672 x 1015 kg
Density: 1.93 g/cm3
Surface gravity: 0.0003 g

Axial tilt: 0.4°
Rotation period: 29.3 T-hours

Black-body temperature: 216 K
Surface temperature (avg.): 185 K

Atmosphere: None.
Hydrographic coverage: 0%

And finally, Avétal, the outermost moon. Another relatively solid one, albeit less like a silicaceous asteroid in composition and more closely resembling a carbonaceous chondrite.

It’s been busy all through the lifespan of Talentar as an inhabited world, for various reasons: having lots of harvestable volatiles, and being relatively easy to get to in delta-v terms among them. But they, strictly speaking, aren’t the main thing.

What’s the main thing?

Look at the orbital period.

Now go back and look at the rotational period of the planet.

If you’re an orbital elevator consortium wondering where you’re going to find a nice, convenient countermass to move into position just above talentosynchronous orbit, those numbers should make you very happy indeed.

Or, rather, they did, and that’s why Avétal as a moon is wholly owned and operated by the Talentar Skyhook & Spaceport Consortium, ICC.

(Once we get to the modern era, of course.)