(Note: for the avoidance of confusion, this is not the same starfighter class as Raymond McVay has been posting over on the G+ fan community; so don’t be confused by the differences…)
“It looks like a blueberry croissant.”
“Blueberry croissant… of DEATH!”
– overheard at Golden Groves (Principalities) starport
HORNÉD MOON-CLASS STARFIGHTER
Operated by: Empire of the Star (Imperial Navy, Imperial State Security, & Imperial Exploratory Service; reliable UARC-sponsored mercenaries)
Type: Starfighter, Orbital and Near-Space Operations
Construction: Ashen Planitia Fleet Yards
Length: 24.8 m
Beam: 60.4 m
Gravity-well capable: Yes
Atmosphere capable: Yes (depending on loadout)
Personnel: 2 nominal, as follows:
Flight Commander / Sailing Master
Flight Engineer
AI expert system support.
(Can operate with a single pilot.)
Additional life support capacity exists to support four passengers in addition, although this requires hot-bunking in three shifts.
Drive: Nucleodyne Thrust Applications 2×1 “Little Sparky” antimatter-catalyzed fusion torch drive
Propellant: Deuterium slush / metallic antideuterium
Cruising (sustainable) thrust: 10.2 standard gravities (9.6 Earth G)
Peak (unsustainable) thrust: 14.0 standard gravities (13.2 Earth G)
Maximum velocity: 0.3 c (based on particle shielding)
Drones:
4 x hardpoint mountings for AKVs, typically Slasher-class
(Hardpoint mountings can also hold single-legionary drop pods, Piton-class, or covert ops equivalents.)
Sensors:
1 x standard navigational sensor suite, Cilmínar Spaceworks
1 x enhanced passive tactical sensor suite, miniature, Sy Astronautic Engineering Collective
1 x enhanced-resolution planetary surface-scan sensor suite, Imperial Exploratory Service (spec.)
Weapons:
“Flyswatter” point-defense laser grid, Artifice Armaments
Other Systems:
Artifice Armaments cyclic kinetic barrier system
Cilmínar Spaceworks Mark III long-duration canned/semi-regenerative life support
3 x Bright Shadow EC-780 information furnace data systems
Ashen Planitia 1-SF vector-control core and associated technologies
Cilmínar Spaceworks high-capacity thermal sinks and integrated radiator system
Aleph Null Systems tactical communications suite
Small craft:
None.
The Hornéd Moon-class is a small starfighter intended for fast attack and fast insertion missions in planetary orbit and deploying to the surface. As such, it has atmospheric capability, and even the ability to land.
In overall form, it resembles – as the quotation indicates – a croissant or crescent moon of flying-wing conformation, with the thin “inside” edge of the crescent facing forward. The two forward-facing points of the crescent are rounded, and rise to a near-cylinder at the for’ard end, and a rectangular section of the central section is “humped” at the rear; this contains the drives, whose nozzles protrude from this rectangular shroud aft.
Atop the starfighter, paired hardpoints on the dorsal hull to port and starboard hold the AKVs, when mounted. Additional mountings near them permit jettisonable fairings to be used to permit atmospheric entry or departure when non-streamlined AKVs are carried.
In between them, atop and for’ard of the drive shroud, radiative striping mounted directly atop the hull, beneath protective shutters, provides heat dissipation. To provide additional control (to the reaction wheel system) when in atmosphere, a number of multiple-purpose aerodynamic control surfaces are mounted along the leading edge of the hull, and to two small vertical stabilizers at the port and starboard edges of the drive shroud. Deployable rollagon landing gear are fitted ventrally in a multiple tailwheel configuration.
The main body of the ship is entirely devoted to fuel storage, with multiple deuterium tanks wrapping around the small antimatter cryocels for maximum protection. Meanwhile, the starboard near-cylinder provides housing for the ship’s avionics, including (beneath the forward-mounted radome and associated shuttered ports) for the triple sensor suites and tactical communications systems.
The starship’s small habitable area is located in that to port; the forward-facing airlock (whose outermost section is covered by a retractable streamlining fairing and extendable airstair) at far port gives onto a short corridor providing access to, in order, the ship’s bridge (behind an open viewport for close-maneuvering use), a two-pod sleeping area, a small room tripling as galley, fab shop, and rest area, and a single-person ‘fresher at corridor end. Limited avionics and life support access is possible through panels in this area; however, there is no pressurized access to the main avionics bay in the starboard near-cylinder or to engineering systems; such access requires EVA. Likewise, if drop pods are carried, access to those (for pre-deployment boarding, say) is only possible through EVA.