Hold the Eggs

Bacon Maneuver: A stealth tactic used by sailing masters with no sense of self-preservation, the Bacon Maneuver involves hiding a small starship within the drive wake of a larger vessel. Large, multiple-drive craft often have “sweet spots” close in where the drive plumes have not yet impinged on one another, and thus in which a small vessel can lurk without being instantly immolated by the larger vessel’s torches. In such a position, the small starship relies on the “white-out” of sensors looking directly at the drive plume to conceal its own presence.

Carrying this out is fraught with a number of problems: the ability to approach the sweet spot through the distal drive wake without being incinerated; the need to sink radiant heat from the drive plumes surrounding the sweet spot; the high likelihood of a collision with the larger vessel or its drive plume should it maneuver unexpectedly; and so forth.

From this litany of difficulties is drawn the name of the maneuver: one who attempts it while being so much as a minim less good than they think they are will assuredly be fried crispy.

– A Star Traveler’s Dictionary

Nope, It’s A Bridge

Many of you, gentle readers, are also devotees of the Atomic Rockets web site. (As well you should be, if you are interested in matters rockety.) And, of course, you may have noted the Atomic Rockets Seal of Approval off in the right-hand column.

But today I’m going to talk about a place where I find myself, and the ‘verse, disagreeing with it. Specifically, with “It is a CIC Not a Bridge“. For convenience, I’m going to quote from it here:

That round room in the Starship Enterprise? The one they call the “Bridge?” Wrong term, that thing is a Combat Information Center (CIC). On a real wet-navy vessel, the bridge is a tiny two-station place used to control the the movement of the ship. It only had stations for the navigation and helm.

In other words, the “bridge” on the Starship Enterprise is that little console that Sulu and Chekov sit at.

The CIC is where all the data from the sensors, scoutships, intelligence agencies, central command, and other ships is gathered and evaluated. The important information is passed to the captain along with tactical suggestions. Exactly the way Uhura, Scotty, and Mr. Spock pass information and tactical suggestions to Captain Kirk.

http://www.projectrho.com/public_html/rocket/misconceptions.php#id–It_is_a_CIC_not_a_Bridge

So, here’s the thing. It’s actually slightly more complicated than that. There are three places on a wet navy vessel all of which do things that people think of as functions of “the bridge”.

There is the CIC, as described above. It’s the information-gathering and decision-making center.

Then there is the wheelhouse, which is where the ship’s movement is controlled from. This, on ships that had a bridge, was usually buried down inside the hull or beneath the superstructure – for one simple reason. You don’t want it shot off. If you lose the wheelhouse, you can’t command the ship any more, so you don’t want it somewhere vulnerable.

And then there is the bridge, which is the place you conn the ship from. It’s up high at the front of the superstructure with generous wings, etc., because its requirement is that you be able to see what the ship’s doing in order to command it.

(On a merchant ship, you probably don’t need a protected CIC, and since you don’t expect anyone to shoot your bridge off, you may have the engine-room telegraphs and wheel up there in one place. On navy vessels, on the other hand, instead of passing engine orders and steering directly, you have a bridge talker yelling “Port 40! Half ahead both!” down voice tubes to the wheelhouse.

On the other hand, the bridge is also exposed to heavy weather, so merchies that expect to encounter the rough stuff may still have a separate wheelhouse. This was actually where they first came from.)

In a historical digression, incidentally, the original bridge is an evolution of what was originally the quarter deck, the raised deck at the stern, on sailing ships. When it became more important to avoid your own smoke than see what your sails were doing, which is to say, as we moved from sail to steam, the raised area moved for’ard and became the bridge as we know it today.

As for the wheelhouse, that came from sailing ship designs in which the poop deck (the highest deck at the stern, typically forming the roof of the stern cabin) was extended forward to cover the quarter deck and the ship’s wheel, on the entirely reasonable grounds that in a storm, it’s easier to steer without being out in the full blast of wind and wave, and in battle, it’s much easier to steer if you have some protection from being shot.

So let’s bring this back around to starships.

You don’t need a bridge in the above sense. As it says further up that page, Rockets Don’t Got Windows – given space ranges and instrumentation, you are never going to be trying to conn the ship with your Mark I Eyeball, which is essentially what a bridge up high is for. Your best view is going to come from sensors, but they can be read just as easily from the CIC, buried deep in the center of the hull for maximum protection.

(Why did the Enterprise designers perch the bridge right up at the top of the saucer, with about three feet between the back of the fancy digital sensor-feed-showing viewscreen and hard vacuum, right where any Tom, Dick, or Kang could shoot at it conveniently? Were they all Romulan spies?)

Do you need a separate wheelhouse? Well, given that starships are certainly going to have fancy electronic controls rather than the hydraulic/pneumatic/etc., systems that imposed constraints on the position of wet navy wheelhouses vis-a-vis the CIC – usually buried down in the bottom of the ship where the armor is thick – I’m going to say probably not. The CIC’s already in the safest place, per above.

(You may have a maneuvering room, as they call the place on submarines, where the engineers translate your requests into detailed instructions to the engines, and given that a starship ACS is probably also rocket engines of some sort, that may also be handled from there – but that’s a different function.)

You are going to have a CIC, because you still need somewhere to coordinate information, make decisions. In my opinion, it will probably also be the wheelhouse (after all, as in the Enterprise example above, it’s just one console, and since the maneuvering orders are going to come from the officer on watch in the CIC anyway, why make him shout any further than he has to?).

The only question is whether it will be called the CIC. The above (combined CIC/wheelhouse) is essentially the arrangement they use on submarines today (where it is called the control room; the bridge is the place you can stand at the top of the conning tower when the boat’s on the surface).

That may be likely nomenclature for starships, too. (Nothing especially that civilian starships are unlikely to have a Combat Information Center.)

On the other hand, the Imperial Navy, and their merchant tradition, call it the bridge. Why? Well, unlike our submarines, there isn’t another bridge somewhere to clash with it – and you get your best view of what’s around from it – and in the meantime, it’s a name that’s got centuries, indeed millennia, of tradition behind it as The Place From Which Ships Are Commanded. It’s a word, in a nutshell, that’s got weight.

And since you’re combining all the functions back together, as they were in the beginning, that counts plenty.

The quarter deck, on the other hand, that’s somewhere else.

Naming Convention

BEING A SUMMARY OF PRODUCTION
AT STARFLIGHT SHIPYARDS, SELÉNE, CAGEWORKS TWO
FOR FIRST QUARTER, 7399

IS Lunar Loom
Custom design (orbital elevator constructor).
Worlds’ Rim Development, ICC; paid in full.

IS Alkahest of Conflict
Harbinger-class diplomatic cruiser
Galactic Arbitrations, ICC; paid in full.

IS The Sun’s Brilliance Scatters All Shadows
False Dawn-class orbital mirror tender
Sahal & Moons Orbital Light and Power, ICC; 12% advanced, mortgage on delivery.

CMS Rosy Conodont
Erlenmyer-class chemical tanker
Biolith Chemical Products, ICC; paid in full.

IS Authentic Communicative Ecstasy
Starwing-class courier, with aftermarket high-intensity communications laser (customer provision)
Private sale; paid in full.

CS Sufficiency
Apocalypse-class battleship
Imperial Navy, per construction contract 7930-02.

IS Only Hard On The Outside
Adze-class orbital construction platform
Homesteads, ICC; six-year payment plan, first due on delivery.

CMS Content Available In Your Area
Shadowcat-class blockade runner
Private sale, paid in full.

CS State Sensor-Ship
Brazen-class recon destroyer
Imperial Navy, per construction contract 7930-02.

CSS Neutrino Simulator
Peregrine-class scout
Imperial Exploratory Service, per construction contract 7930-01.

CMS Performative Optimism
Profit-class free trader
Private sale; 12% advanced, mortgage on delivery.

CSS Celeritous Sciencier
Breadboard-class space research platform, no outfitting.
Starleaper Initiative; payment on delivery.

CMS Perambulatory Debauch
Pleasurable Company-class liner
Centralia Line, ICC; 12% advanced; mortgage on delivery.

IS Seismic Dissection
Skoufer-class smeltership
Celestial Mining, ICC; paid in full.

IS Premonitions of Debris
Brutal-class cruiser
By commission for Galek’s Gutrippers; 12% advanced, mortgage on delivery.

CMS Insufficiently Hyped
Kalantha-class frontier trader
Private sale, payment on delivery.

CSS Algorithmic Beatitude
Merí-class executive yacht, without life support or internal fixtures
Transcendent commission; deliver to Qerach for final fitting-out.

CMS Peripatetic Pilgrim
Flatfoot-class short-range passenger transport
Cilmínar Orbital Charterships; 12% advanced, mortgage on delivery.

IS Bright Aphelion
Icebox-class shardcruiser
Anniax Deep Black Development, ICC; 12% advanced, mortgage on delivery.

CMS Generous Selfishness
Boxcar-class modular trader
Deliver to market.

CMS Truth and Value
Procurer-class freighter,
Deliver to market.

IS Chariot of a Lesser Sun
Sparklebug-class power freighter
Homesteads, ICC; six-year payment plan, first due on delivery.

CMS Bandwidth Advantage
Wain-class megafreighter
Unnecessaries, ICC, under standing construction contract.

Although Most Designs Are Poly

Ascíël coupler: the standard design, in modular habitat and starship architecture, for the coupler that binds adjacent modules into a single unit.

For such semi-permanent connections on a large scale, simple docking adapters are obviously unsuitable; tidal forces and other stresses common in large structures may cause a simple docking adapter to be stressed sufficiently to separate over time, and starship-level thrust applied to a modular design would cause near-immediate failure.

A variety of designs (often based on existing railroad couplers) were tried to prevent this while also avoiding the expense, wasted time, and potential damage involved in bolting or welding additional reinforcement onto the modules, with varying degrees of success, eventually converging on the modern Ascíël coupler.

The Ascíël coupler, as defined in IOSS 64212, makes use of the IUSI androgynous docking adapter (as defined in IOSS 52114) to achieve initial connection. (As such, it too comes in the three there-defined standard sizes.)

Once hard dock has been achieved, the surrounding coupler engages a nested pair of counterrotating helical screws, which intertwine from each side of the coupler to form a solid bond between the modules. Once the screws have advanced to the fully engaged position, twelve locking rods (six per screw, three being managed by each coupler) are electromagnetically released and are forced by springs into their extended position through holes in the screws, preventing them from rotating and thus from working loose over time.

When fully engaged, an Ascíël coupler has an effective strength equivalent to that of the surrounding module hull.

– A Star Traveler’s Dictionary

On AKVs and Survivability

From the questions box:

Dear Gentlesoph,
Having been reading your posts, I have a question about AKVs such as the ‘Daggerfan’ and ‘Slasher’ classes. With high-powered lasers capable of doing damage at one light second, how do AKVs survive the 300,000km journey into single kilometer range? As stated in your ‘Nonstandard Starship Scuffles’ post, military vessels use armor woven through with thermal superconductors dumping heat into ‘thermal goo’. I assume this armor/thermal management system applies to AKVs as well, although you also state that point-defense lasers will shred a vessel unfortunate enough to get into very close range. How can an AKV survive at single kilometer ranges long enough to inflict damage on the target? Thank you for your time, I look forward to more posts!

Well, there are two parts to this: how do AKVs close to skin-dancing range, and how do they survive when they get there? I’ll take ’em one at a time.

On the first point: with great difficulty.

If you take a wing of AKVs and throw them at a fresh battleship, all you’re doing is providing its point-defense computers with skeet; they’ll be chaff and charnel before they get anywhere near the inside of the BB’s point-defense zone.

What you have to do is wear it down first. That’s is the job of the non-carriers on your side of the fight: throw a lot of kinetics at the enemy to make their PD work hard. That does three jobs: one, it keeps the PD grid busy in itself; two, any of it that gets through may just take out a chunk of the PD grid; but most importantly, three, by making them run their point-defenses, you’re building up heat in their ship. Your non-carriers also have the job of pumping heat into their ship directly with the big lasers.

That heat, in turn, is going to eat away at their PD efficiency in a variety of ways. Most simply, it’s going to have to cut back on its firing rate once the heat sinks start filling, because otherwise the crew will cook, but also the hardware becomes less efficient, processor error rates go up, and similar badness ensues.

That’s when you send in the AKVs, and you send in a lot of AKVs mingled with a lot of chaff and decoys, swamping the capabilities of the now-degraded PD grid. They won’t all get through – you plan for a lot of them not to – but once the grid’s sufficiently degraded, enough will to ruin the BB’s day.

As for when they’re there? Remember, they’re described as operating within the point-defense envelope, which is to say, inside its inner boundary, which is defined by the minimum effective range of the PD – set by a variety of factors, such as the range at which firing the PD will seriously damage your own ship, but of which probably the most important is the ability of the PD to track the target and slew to fire on it. At the sort of hug-the-hull sub-km range AKVs like to operate at, it doesn’t take much velocity to generate a huge traversal angle, and what you can’t track, you can’t reliably hit.

(And it’s hard for your screen to fire effectively at the AKVs ruining your day, ’cause even discounting the effects of the AKV exploding at point-blank range, every miss will hit you.)

All of which is to say: While there are some subtleties and complexities to the tactics (defense AKVs, screening vessels sharing PD, etc., etc.), the short answer is it takes a lot of work and losses to get an AKV force within range of a target, but once you do, that target is dead meat.

You’ll Want Us High and Clear

ICED FIRE-CLASS ANTIMATTER TRANSPORT

Operated by: Extropa Energy, ICC
Type: Antimatter Transport
Construction: Islien Yards, ICC

Length: 1,600 km (overall)
Beam: 3,200 km
Dry mass: 39,200 tons (not including cryocels)

Gravity-well capable: No; not even low-orbit capable.
Atmosphere capable: No.

Personnel: 31

  • Flight Commander
  • 3 x Flight Executive/Administrator
  • 3 x Flight Director
  • 3 x Flight Engineer
  • 3 x Propulsion Engineer
  • 3 x Cargomaster
  • 3 x general technicians
  • 2 x riggers/EVA specialists
  • Thinker-class AI

Drives:

  •  3 x Nucleodyne Thrust Applications 1×1 “Sunheart V” fusion torch

Propellant: Deuterium/helium-3 blend
Cruising (sustainable) thrust: 3.5 standard gravities (3.3 Earth G) at nominal load
Maximum velocity: 0.3 c unloaded, 0.1 c loaded (based on particle shielding)

Drones:

  • 3 x general-purpose maintenance drones
  • 3 x tether-climbing rigger drones

Sensors:

  • 1 x standard navigational sensor suite, Islien Yards

Other Systems:

  • 2 x Islien Yards boosted commercial kinetic barrier system
  • Biogenesis Technologies Mark VII regenerative life support
  • 2 x Bright Shadow EC-780 information furnace data system
  • Islien Yards custom dual vector-control core and associated technologies
  • Systemic Integrated Technologies dual-mode radiator system

Small craft:

  • 1 x Élyn-class microcutter
  • 1 x Adhaïc-class workpod

The standard vehicle for ferrying antimatter from the Cirys bubble at Esilmúr to its various places of use, the Iced Fire-class is a starship designed around one core principle, commonly adhered to when dealing with antimatter:

Don’t get any on you.

The core hull itself is much smaller than the dimensions above suggest; a blunted cylinder a mere 252 m in length, including bunkerage. This houses the entire livable volume of the starship, including a dock for the Élyn-class microcutter at the bow, and a bay housing for the workpod. Rather than the typical stern mounting, the three Sunheart V fusion torches are located in nacelles set off from the hull on radiator pylons amidships, located 120 degrees apart; these nacelles are fully vectorable for maximum maneuverability.

The stern of the core hull instead contains the attachment points and winches for a 1,600 km tether, at whose fully extended end is in turn attached the spinhub. This is a simple unit containing monitoring equipment and a centrifugal ring, to which in turn are mounted eight further attachment points and associated tethers, terminating in heavy couplings. It is to these couplings that antimatter cryocels are mounted during loading, and dismounted upon arrival. In flight, the action of the centrifugal ring maintains appropriate safe distance between the core hull and the cryocels, and between the cryocels themselves, while also ensuring that jettisoned cryocels will move away from the main body of the starship in the event of containment failure.

 

Covered In Bees

HURRICANE-CLASS DRONE BATTLESHIP (CARRIER)

Operated by: Empire of the Star
Type: Drone Battleship, General Operations
Construction: Palaxias Fleet Yards

Length: 2.3 km
Beam (avg.): 0.8 km
Dry mass: 2,900,000 tons

Gravity-well capable: No.
Atmosphere capable: No.

Personnel: 1,294

  • 396 crewers
  • 514 flight operations
  • 384 espatiers
  • Thinker-class AI

Drives:

  • Imperial Navy 3×3 “Neutrino Dawn” antimatter pion drive
  • Nucleodyne Thrust Applications 4×4 “Nova Pulse” fusion torch

Propellant:

  • Deuterium slush/metallic antideuterium
  • Deuterium/helium-3 slush blend

Cruising (sustainable) thrust: 5.6 standard gravities (5.2 Earth G)
Peak (unsustainable) thrust: 6.6 standard gravities (6.1 Earth G)
Maximum velocity: 0.3 c (rated, based on particle shielding, with flight deck doors closed)

Drones:

  • 43,200 x AKVs (loadout varies by mission, typically Daggerfan-class)
  • Associated thrust packs and modular swapout payloads, by mission
  • 64 x “Buckler VI” point-defense supplementary drones, Artifice Armaments, ICC
  • 32 x “Rook” tactical observation platforms, Sy Astronautic Engineering Collective (with supplementary IN hardware)
  • 64 x general-duty modular drones (not counting flight operations hardware)

Sensors:

  • 3 x independent standard navigational sensor suite, Cilmínar Spaceworks
  • 6 x [classified] enhanced active/passive tactical sensory suite, Sy Astronautic Engineering Collective
  • Imperial Navy tactically-enhanced longscan

Weapons (Auxiliary):

  • 96 x “Slammer III” dual turreted mass drivers (local-space defense)
  • Artifice Armaments, ICC “Popcorn” point defense/CQB laser grid

Other systems:

  • 3 x Artifice Armaments, ICC cyclic kinetic barrier system
  • Biogenesis Technologies, ICC Mark VII regenerative life support (multiple independent systems)
  • 3 x Bright Shadow, ICC custom-build megaframe data system, plus multiple EC-1140 information furnaces for sectoral control
  • AKV repair facilities
  • 3 x Extropa Energy, ICC “Calviata” second-phase fusion reactors
  • 6 x Imperial Navy AKV tactical management suite
  • 3 x Imperial Navy DN-class vector-control core and associated technologies
  • 3 x Nanodynamics, ICC “Phage-a-Phage” immunity
  • 6 x modular swapout regions (large)
  • Systemic Integrated Technologies, ICC high-capacity thermal sinks and dual-mode radiative striping; 3 x deployable droplet heat radiators
  • Tactical bridge

Small craft:

  • 4 x Nelyn-class modular cutters
  • 2 x Ékalaman-class pinnace/shuttle (atmosphere capable)
  • 16 x Élyn-class microcutter
  • 32 x Adhaïc-class workpod

(You’ll notice the obvious similarities to the Leviathan-class dreadnought in systems installed, which should come as no surprise; these two came off the drawing board at roughly the same time. And if you’re wondering why a BB-sized carrier has a DN-sized vector-control core – well, you’ll note that the much more tightly packed supplies of, for example, bunkerage plus AKV bunkerage, plus the need to propel all those AKVs, make it mass significantly more than a Leviathan in practice. Carriers tend to be thus.)

The core hull of the Hurricane-class drone battleship (carrier) is divided into five segments: from bow to stern, the flight operations section, the AKV bunkerage, the command section, the bunkerage, and the propulsion bus, laid out tail-lander style. The flight operations section, by design, is a hexagonal prism, flat faces to dorsal and ventral, and the other ship segments follow this pattern.

Attached to this on the starboard side, extending to dorsal and ventral of the core hull, and running from 100 m ahead of the flight operations section (to give AKVs exit and entrance cover) back to cover the first 100 m of the bunkerage, is the starship’s “buckler”. The core hull of the Hurricane-class is relatively lightly armored for an IN vessel, since carriers are intended, doctrinally, to stay out of CQB and mass conservation supervenes. However, to provide protection against long-distance fire in the outer engagement envelope, as a less maneuverable ship class, the buckler – heavy armor plate connected to the core hull by shock-absorbing trusses – covers and extends slightly beyond the two starboard facets, providing additional protection for as long as the vessel maintains the proper attitude.

The flight operations section at the bow, taking up the first half-kilometer of the ship, is effectively a single large flight deck, opened to space by an armored spacetight door in the for’ard hull. (Unlike smaller flight decks, this region cannot be pressurized.) The 43,200 carried AKVs occupy hexagonal cells clustered on the inner hull to port, starboard, dorsal, and ventral from which they launch themselves, while a small conventional flight deck at the aft end of the section provides space for the Hurricane‘s small craft. The after hull of the flight operations sections is heavily armored, to provide what protection it can against a lucky shot penetrating the flight deck.

Immediately behind the flight operations section is the AKV bunkerage section, which houses fuel and propellant, along with ammunition and other consumables, for the carried AKVs, permitting refueling and rearming. This is the most protected area of the ship, as AKV fuel and ammunition tends to be highly volatile.

The command section, the primary habitable area of the starship, is a relatively small area sandwiched between the AKV bunkerage and the carrier’s own bunkerage, also protected behind the buckler, and housing both the starship’s own operations and the majority of the outsize flight operations department. From dorsal and ventral, sensor towers extend beyond the buckler, allowing line-of-sight sensing and communications with the battlespace without exposing the core hull.

(As a side note, the Hurricane-class, like most large carriers, is an example of the IN’s dual command system. The starship itself is commanded by a Flight Commander, ranked Captain [O-7], from the line branch, while the AKV wings are commanded by a Group Captain, an equivalent rank. Overall command of both is held by a Mission Commander, ranked Commodore [O-8].)

Aft of these, a conventional bunkerage section and propulsion bus, equipped with droplet radiators for primary cooling, fills out the remaining length of the vessel.

Scattered about the length of the vessel is the same heavy-duty (“Popcorn”) point-defense grid used on the Leviathan-class dreadnought, along with 96 small turreted mass drivers – similar to those used on lighter IN classes – for heavier local-space defense.

(They are not intended as offensive weapons; the carrier has 43,200 of those in its AKVs, and would-be Flight Commanders who can’t resist the urge to take their ships into close-quarters battle are redirected towards frigates, destroyers, and other roles where such is (a) tactically useful and (b) much less likely to get one either cashiered for gross incompetence or relieved of command by an XO for whom it is not a good day to die.)

 

Leviathan, Awake

LEVIATHAN-CLASS DREADNOUGHT

Operated by: Empire of the Star
Type: Dreadnought, General Operations
Construction: Palaxias Fleet Yards

Length: 3 km
Beam (avg.): 0.8 km
Z-Beam (avg.): 0.6 km

Dry mass: 2,500,000 tons

Gravity-well capable: No.
Atmosphere-capable: No.

Personnel: 6,736

  • 4,968 crewers
  • 1,768 espatiers
  • Thinker-class AI

Drives:

  • Imperial Navy 4×2 “Neutrino Dawn” antimatter pion drive
  • Nucleodyne Thrust Applications 4×4 “Nova Pulse” fusion torch

Propellant:

  • Deuterium slush/metallic antideuterium
  • Deuterium/helium-3 slush blend

Cruising (sustainable) thrust: 7.2 standard gravities (6.7 Earth G)
Peak (unsustainable) thrust: 8.4 standard gravities (7.8 Earth G)
Maximum velocity: 0.3 c (rated, based on particle shielding)

Drones:

  • 144 x AKVs (loadout varies by mission, typically Daggerfan-class)
  • 144 x add-on thrust packs for AKVs
  • 72 x “Buckler VI” point-defense supplementary drones, Artifice Armaments, ICC
  • 72 x “Rook” tactical observation platforms, Sy Astronautic Engineering Collective (with supplementary IN hardware)
  • 72 x general-duty modular drones

Sensors:

  • 3 x independent standard navigational sensor suite, Cilmínar Spaceworks
  • 18 x [classified] enhanced active/passive tactical sensory suite, Sy Astronautic Engineering Collective
  • Imperial Navy tactically-enhanced longscan

Weapons (Primary):

  • 4800/2400 mm custom axial heavy mass driver, Artifice Armaments, ICC

Weapons (Secondary):

  • 4 x 4800/2400 mm custom heavy mass drivers, Artifice Armaments, ICC
  • 4 x “Black Lightning” axial grasers, Artifice Armaments, ICC

Weapons (Tertiary):

  • 64 x 2400/1200 mm turreted mass drivers (32 capable of broadside use), Artifice Armaments, ICC
  • 8 x 2400/1200 mm turreted mass drivers (rear-firing for kilt defense), Artifice Armaments, ICC
  • 32 x “Flashburn” turreted heavy lasers, Artifice Armaments, ICC
  • Artifice Armaments, ICC “Popcorn” point defense/CQB laser grid

Other systems:

  • 3 x Artifice Armaments, ICC cyclic kinetic barrier system
  • Biogenesis Technologies, ICC Mark VII regenerative life support (multiple independent systems)
  • 3 x Bright Shadow, ICC custom-build megaframe data system, plus multiple EC-1140 information furnaces for sectoral control
  • Class IV starship repair facilities
  • 8 x Extropa Energy, ICC “Calviata” second-phase fusion reactors
  • Flag bridge
  • 4 x Imperial Navy command communications/tactical networking suite
  • 4 x Imperial Navy DN-class vector-control core and associated technologies
  • 3 x Metric Engineering, ICC “Gloaming” ray shielding system
  • 3 x Nanodynamics, ICC “Phage-a-Phage” immunity
  • 32 x modular swapout regions (large)
  • Systemic Integrated Technologies, ICC high-capacity thermal sinks and dual-mode radiative striping

Small craft:

  • 8 x Reaver-class starfighters, with own AKVs
  • 8 x Nelyn-class modular cutters
  • 4 x Ékalaman-class pinnace/shuttle (atmosphere capable)
  • 16 x Élyn-class microcutter
  • 16 x Traest Sargas-class troop transport
  • 32 x Adhaïc-class workpod
  • 32 x Marlinspike-class boarding torpedo
  • 32 x Sledgehammer-class drop shuttle

From without, the Leviathan-class dreadnought resembles a slender wedge, a dagger-blade without a hilt. It is, of course, rather larger than virtually all equivalent dreadnought classes and even some superdreadnought classes seen elsewhere, in keeping with the Empire’s naval construction policy of “shock and awesome”.

This should come as no surprise to anyone, since the realities of armoring such a vessel mandate such a glacis, and as such virtually all ships of the plane, of whatever origin, share this common feature. The Leviathan mixes this up slightly, having a change in ratio along its length that gives the hull a subtle curve and the ship entire a forward-leaning, sleek and hungry look.

(Although those who serve aboard Leviathans, especially back in the maneuvering sector, tend to describe their workplace as the ship’s “fat ass”.)

As is also usual, the apparent outer hull of the vessel is entirely composed of armor plating, which in the case of the Leviathan is a little over 30m thick, comprised of multiple layers of heavy plate, Whipple foam, radiation-absorbent material, thermal superconductors, dilatant shock gel, flexible spreader trusses, and other necessities for survivability in the modern high-energy battlespace, many of which remain classified.

(The important thing to remember about this armor plating is that it is not there to protect against a direct hit from an opposing capital ship. No practicable material will do that. It’s there to protect against the spallation debris left behind after your point-defense grid sweeps the sky like the hand of an angry laser-spewing god.)

This armor serves as a backup to the triple-layered cyclic kinetic barrier system with which the Leviathan is equipped, along with the likewise triple-layered ray shielding to protect against photonic attack.

The majority of the space within this outer hull is unpressurized volume, occupied by machinery space, bunkerage, stores (tanks and unpressurized cargo holds), accessways, robot hotels, and magazines. The habitable volume is represented by a relatively small (roughly equivalent to a 232-storey building, laid out tail-lander style) cylinder buried deep within this, above the axial passage for the primary mass driver, with two attendant counter-rotating gravity rings providing space for gravity-requiring special facilities. Below and to port and starboard of this passage can be found the eight fusion reactors providing non-thrust power to the Leviathan.

In addition to the primary (axial) heavy mass driver, the Leviathan mounts four secondary heavy mass drivers of only slightly lower power along its dorsal-ventral centerline, spread out at 15 and 30 degrees off-axis (although with off-bore firing capability), along with four heavy grasers clustered around, and aligned to, the axial primary.

Tertiary weapons systems consist of 64 turreted mass drivers and 32 turreted heavy lasers, of which half can slew far enough to be capable of broadside firing. An additional eight turreted mass drivers are mounted on the stern for kilt defense, should the prospect of attacking through, or at best in close proximity to, the emissions plume of the Leviathan‘s 24 torch drives not be sufficient deterrent. Finally, the Leviathan is equipped with the Artifice Armaments “Popcorn” laser grid for point-defense and CQB purposes, ensuring that anyone foolish enough to close to point-defense range will have mere microseconds to contemplate their folly before vaporizing in one of the most spectacular coruscations known to sophontkind.

Also pressurized are portions of the “docks and locks” sections to port and starboard, 500 meters for’ard of the drives, which house the Leviathan‘s small craft complement. These are buried beneath the starship’s outer hull armor, which is designed to retract under non-combat conditions to provide ingress. In light of this, the multiple AKV wings and drones are launched via dog-leg tubes through the dorsal and ventral armor, and recovered – if this is necessary during an engagement – when circumstances permit turning broadside to the enemy and recovering through the far-side landing bay.

As a dreadnought, the Leviathan is equipped with a flag bridge and communications/tactical mesh suite for task force command; with the capability to effect repairs on smaller vessels of its task force; with the ability to deploy starfighters for patrol or remote operations missions; and with a substantial espatier force and the means to deploy them, whether in boarding operations or for groundside raids.

 

To The Moon!

(Turns out the first ship I want to do isn’t one of the ones anyone asked for. Oh, well.)

SILVERFALL-CLASS LUNAR EXPLORER – BLOCK II

Operated by: Spaceflight Initiative
Type: Early exploration vessel.
Construction: Spaceflight Initiative.

Everyone’s heard of the Silverfall-class explorer, the starship that first carried eldrae from Eliéra to its moons. (A surprisingly large number of them have visited the museum out on Seléne where Silverfall Four — Moondancer — rests in state out on the regolith, where she was flown to her resting place by her original crew, and is kept in flight-ready condition by her many admirers.)

The design discussed here is of the Block II variant of the Silverfall-class, which incorporates the modifications made to improve performance and livability after studies performed on Silverfall Zero and Silverfall One, and whose two examples can be considered representative of the class, including as they do the actual craft, Moondancer, which made the first landing on Seléne; later design revisions included a number of specialized variants, but made no further changes to the basic design.

Length: 42.2 m, of which:

  • Mission module: 12.2 m.
  • Engineering frame: 18 m (overlaps with propulsion module)
  • Propulsion module: 12 m
  • Shock absorbers and pusher/ground plate: 12 m

Beam: 12 m (mission and propulsion module); 22m (widest point)
Mass (fueled): 616,200 kg

Gravity-well capable: Yes.
Atmosphere-capable: No.

Personnel: 2 required, as follows:

Flight Commander
Flight Director/Engineer

Accommodates 6 further mission specialists.

Drive: Silverfall-specific fission pulse drive with laser trigger; cold-gas attitude control and landing system.
Fuel: Plutonium coated fuel pellets.
Cruising (sustainable) thrust: 2.4 standard gravities
Delta-v reserve: 16,800 m/s

Drones: Simple automation only.

Sensors:

Star tracker
Inertial tracking platform
Passive EM array
Short-range collision-avoidance and docking radar
Mk. 1 Eyeball

Weapons: None, unless you count the drive.

Other systems:

Thorium pebble-bed power reactor
Omnidirectional radio transceiver
Communications laser
Whipple shield (habitable area only)
Canned (non-regenerative) life support; CO2 scrubbers
Redundant flight control systems
NaK pumped-loop high-power radiators and maneuvering heat-sinks
NH3 low-power radiators

Small craft: None.

DESCRIPTION

The original Phoenix-class orbiter was once described as an explosion in a girder factory, and its smaller cousin, the Silverfall, maintains much of that look, despite at least some improvements in elegance between the designs. That, and that unlike the Phoenix, the Silverfall was designed as a pure space vessel, intended to be built at and operate from Oculus Station in Eliéra orbit, and to land only on airless Seléne and Elárion.

The layout of the Silverfall-class can be divided into four sections: the upper mission module, the engineering frame which sits atop and wraps around the propulsion module, and the shock absorber/pusher plate section at the bottom.

At the top, the mission module is divided into three tail-lander decks with plenum space in between. The uppermost deck, topped by a blunt cupola and surrounded by the various navigational and communications antennae, contains semicircular bridge and mission management sections, surrounded by the ship’s avionics. From it, an axial passage descends through the next two decks, terminating in a small engineering space (housed in an aft projection) where the mission module connects to the primary thrust truss of the engineering frame. A secondary access tube, normally depressurized, runs down from this passage through the engineering frame.

The second deck houses three pie-segment areas; the ship’s laboratory, workshop, and main stowage area. Opposite the stowage area, between the laboratory and workshop, a secondary airlock provides maintenance access while in flight to the exterior of the ship (with a ladder down to the upper levels of the engineering frame), and is the main access point when the starship is docked.

(Opposite this airlock, centered on the mission module’s vertical axis, is the gold plaque bearing the Imperial Star and the stylized rocket-and-crescent-moon of the Spaceflight Initiative, with beneath them the various names and logos of the various contributors making the Silverfall mission possible.)

The third, lowermost deck contains the crew quarters, divided into a number of modular pods, along with the galley, central mess, ‘fresher, and a small medical bay.

Six meters below the mission module is the propulsion module, a heavy steel capsule containing the guts of the nuclear-pulse drive that powers the Silverfall. For the most part, however, it is hidden by the engineering frame which wraps around and atop it, a mesh of trusses containing, most notably, the six pellet silos, evenly spaced around the ship, containing the plutonium fuel pellets, and the spherical tanks of cold-gas propellant and life-support supplies.

The lower surface of the engineering frame (along with that of the propulsion module) is the solid sheet of the protective shadow shield, protecting the upper sections of the craft from radiation produced by the pulse drive. The secondary access tube descending from the base of the mission module connects to the primary airlock, located directly above the edge of the shadow shield vertically beneath the secondary airlock, and from which a descent ladder can be lowered once the drive shroud is in place.

At its edges, laser modules extend past the edge of the shield to trigger the explosive coatings of the fuel pellets; just within those edges, sealed slots permit the segmented drive shroud to be lowered after landing, surrounding the mechanics of the shock absorbers and pusher plate, to protect disembarked astronauts from residual drive radiation.

 

The Sapphire Coloratura: Revealed!

Inspired by a passing comment on the Eldraeverse Discord, we now present a galari starship, the Sapphire Coloratura-class polis yacht; the favored interplanetary and interstellar transport of all sophont rocks of wealth and taste.

SAPPHIRE COLORATURA-CLASS POLIS YACHT

Operated by: Galari groups requiring luxurious private transit.
Type: Executive polis yacht.
Construction: Barycenter Yards, Galáré System

Length: 96 m (not including spinnaker)
Beam: 12 m (not including radiators)

Gravity-well capable: No.
Atmosphere-capable: No.

Personnel: None required (craft is self-sophont). Can carry an effectively arbitrary number of infomorph passengers.

Main Drive: Custom “dangle drive”; inertially-confined fusion pellets are detonated behind a leading spinnaker, the resulting thrust being transferred to the starship via a tether.
Maneuvering Drive: High-thrust ACS powered by direct venting of fusion plasma from power reactors; auxiliary cold-gas thrusters.
Propellant: Deuterium/helium-3 blend (pelletized aboard for main drive).
Cruising (sustainable) thrust: 7.2 standard gravities
Peak (unsustainable) thrust: 7.5 standard gravities
Maximum velocity: 0.12 c (based on particle shielding)

Drones:

4 x galari body-crystals; since the galari are ergovores, any galari passenger or AI system may use these for EVA purposes.

Sensors:

1 x standard navigational sensor suite, Barycenter Yards
1 x lidar grid and high-sensitivity communications laser grid, Barycenter Yards

Weapons:

Laser point-defense grid.

Other Systems:

  • Cilmínár Spaceworks navigational kinetic barrier system
  • 4 x Bright Shadow secondary flight control systems
  • Kaloré Gravity Products type 1MP vector-control core
  • Systemic Integrated Technologies flux-pinned superthermal radiator system

Small craft:

5 x minipoleis (no independent drive systems; local accumulators only)

DESIGN

The Sapphire Coloratura was intended to be a shining jewel in the crown of galari starship design, so it is perhaps fitting that it indeed resembles a shining jewel, the translucent crystal of its main body throwing sparkles of rainbow light everywhere when it chooses to fly close to stars, or when it is illuminated by the fiery blasts of its main drive.

The main body of the ship is similar to, in many ways, the galari themselves; a sixteen-faceted crystal, with eight long facets facing forward to the bow tip, and short, blunter facets facing aft towards the mechanical section, a gleaming metal cylinder with a rounded-off end taking up the remaining two-thirds of the starship’s length.

To proceed from fore to aft, the bow tip of the ship is capped with metal, housing the core mechanisms of the dangle drive; the sail deployment system, tether terminus, pellet launcher, and ignition lasers.

From our Earth perspective, this drive is very similar to the Medusa-type Orion; thrust is delivered to the starship via a 216 m diameter spinnaker “sail” on a tether ahead of the craft. Rather than dedicated pulse units, the drive projects pelletized D-3He charges ahead of the craft to the focal point of the spinnaker, where inertially-confined fusion is initiated by the ignition lasers, reflected to surround the pellet by the inner surface of the spinnaker. The resulting nuclear-pulse detonation accelerates the craft, smoothed out by the stroke cycle of the tether (see above link).

The main crystal body of the craft is essentially a solid-state piece – save for cooling labyrinths and the axial passage required by the drive – of galari thought-crystal: a substrate which holds the ship’s own intelligence, those of all passengers and any crew needed, along with whatever virtual realms, simulation spaces, or other computational matrices they may require. As such, there is little that can be described by way of an internal layout; most polis-yachts are unique in this respect.

The “waist” – broadest point – of the body is girdled by a machinery ring, containing within it the four fusion power reactors (multiple small reactors were preferred for extra redundancy by the designer) with the associated ACS, and at points between them, the backup flight control systems, navigational sensor suite, and other small auxiliary machinery.

At the aftmost point of the main body, where the blunter end of the crystal joins the mechanical section, eight crystal spikes project, symmetrically, from the point of junction. These are left hollow by the manufacturer and equipped with tip airlocks to provide a small amount of volume for cargo space and aftermarket customization; if non-ergovore passengers are expected, two of these are typically converted into quarters and life-support. A central chamber where the spikes meet serves as a body and robot hotel.

Entering the mechanical section, an accessible chamber at the forward end of the cylinder provides accommodation for the vector-control core and larger auxiliary machinery, including the thermal control system. The remainder of the section is entirely made up of bunkerage for the reactors and main drive.

The galari have never, it should be noted, shied away from making maximal use of vector control technology. This is particularly notable in the Sapphire Coloratura‘s design in two areas:

First, its radiators, which cloak the center of the mechanical section with a divided cylinder of gridwork, individual carbon-foam emitting elements held together and in place away from the hull by vector-magnetic couples, linked back to the ship itself only by the ribbons of thermal superconductor transmitting waste heat to them; and

Second, by the minipoleis that the Coloratura uses as small craft. Resembling nothing so much as miniature duplicates of the starship’s main body, these auxiliary blocks of thought-crystal are held in place orbiting the main body of the ship – often in complex patterns, even under full acceleration – connected only by vector-magnetic couples and whisker-laser communication.

That is pure ostentation.

 

The Range of Range

“You will hear it said that lasers have ‘a pathetically low range’ and are ‘suitable only for point defense and the inner engagement envelope’. To put this statement into its proper context, one must understand the proper scale of starship engagements; i.e., that the pathetically low range in question is approximately a light-second, or to put it another way, that the enemy vessel must close to within a distance roughly equal to twenty-five diameters of your home planet before you can engage them with this notoriously short-ranged weapon.”

The Dirtsider’s Guide to Interplanetary Warfare

Not For Kitchen Use

At its simplest, a point-defense laser grid is a system of hundreds of meshed, phased-array, variable-frequency, plasma laser elements (on its parent starship, these are the glossy black domes speckling the hull), capable of outputting an arbitrary number of variable-power beams, limited only by the capacity of the controlling computer, along an equally arbitrary number of bearings.

In its most benign civilian application, the laser grid protects the hull against incoming mass, by vaporizing small particles entirely, and by causing outgassing of the surface elements of larger ones in such a way as to produce thrust sufficient to redirect their course – acting, in effect, as a portable laser broom. A standard military laser grid fulfils this function on a larger scale, vaporizing and redirecting incoming kinetic slugs using the same essential principle, while penetrating and disabling AKVs. Such a grid is typically able, in full-autonomic mode, to keep the volume of space within a dodeciad miles of the parent starship clear of all material objects not explicitly tagged by IFF as friendly.

A military-grade grid, of course, has certain other applications. One, for example, is serving to propel various otherwise-unguided packages by use of the grid to heat inert ablative propellant attached to them, functioning as the power element of a laser thermal drive. Another, less advertised, is that of dealing with enemy starships that have been disabled, but which decline to surrender and which do not possess any unusual value to be recovered by an opposed boarding action: specifically, a disabled starship within effective range of a laser point-defense grid can be conveniently sliced and diced into effectively-inert fist-sized cubes.

 

Hariven-class Free Trader

So, I got a request from a reader for a few specs on the Hariven-class free trader. Well, why not?

(Sadly, they were imagining something like Vaughan Ling’s Planetes-inspired debris collector with comparable dimensions, capacity, etc. Sorry to say it, but that ship? Had some style. The Hariven? Really doesn’t.)

HARIVEN-CLASS FREE TRADER

Operated by: Desperate free traders, just starting-out bands on tour, your sketchy brother, refugees, space hobos, and anyone else who can’t afford a better ship.
Type: 
Basic freighter.
Construction:
Under open-source license; produced by multiple manufacturers, most of whom would prefer not to admit it, along with various backyard fab shops.

(And when I say “desperate free trader”, I don’t mean, say, the people who fly around in a Firefly-class in Firefly. Those people, in this verse, own something like a Kalantha-class. This is down from there at the true ass end of space travel.)

Length: 46m, of which 30m is the hold.
Beam: 
8m (not including radiators)

Gravity-well capable: No.
Atmosphere-capable:
 No.

Personnel: 3, as follows:

Flight Commander
Flight Director
Flight Engineer

(This assumes you’re following the typical regulations which require – since the Hariven has no AI, and only dumb automation – that at least one qualified person be on watch at all times, hence a minimum of three. In practice, a Hariven can be flown by one and very often is, if they don’t mind violating the rules of navigation of every halfway sane polity in space.)

Drive (typical; may vary from build to build): Nucleodyne Thrust Applications “Putt-Putt” fusion pulse drive.
Propellant:
 Deuterium pellets.
Cruising (sustainable) thrust:
 0.6 standard gravities (0.56 g)
Peak (unsustainable) thrust:
 1.2 standard gravities (1.12 g)
Delta-v reserve:
 (Not yet calculated, but limited; if you’re flying a Hariven, you ain’t going brachy unless you devote a lot of your hold space to extra tanks. Be prepared to spend much of your voyage time on the float.)
Maximum velocity:
 0.02 c (based on particle shielding)

Drones:

Not supplied as standard, but buy some. You’re gonna need ’em.

Sensors:

Orbital Positioning System sensors
Inertial tracking platform
Passive EM array
Short-range collision-avoidance and docking radar

Weapons:

None.

Other systems:

Omnidirectional radio transceiver
Communications laser
Whipple shield (habitable area only)
Mechanical regenerative life support (atmosphere/water only)
Algiprote vat
2 x information furnace data systems
Sodium droplet radiators

Small craft:

Not supplied as standard, but a common as-supplied variant adds a partition to convert part of the forward hold into a bay with docking clamps suitable for many surface-to-orbit vehicles.

DESCRIPTION

It’s a classic tail-lander layout of the crudest form: a 30m steel box welded on top of an 8m steel cylinder welded on top of a cheap fusion pulse drive, the latter two surrounded by pellet containers. It couldn’t look more brutalist/functional if it tried. At least most Hariven owners try to give it a bright paint job.

The hold is up front, a big steel box roughly the size of eight standard shipping containers. (Indeed, sometimes it’s made from eight standard shipping containers.) Putting it right for’ard has the advantage of simplifying construction greatly – all the machinery is at one end – and giving Hariven captains the assurance that if they ram their junker into anything accidentally, at least there’s 30m of other stuff between them and whatever they hit.

The hold opens up along its entire length on the port side to permit access. Responsible captains who convert their Hariven for passenger transport (the aforementioned touring bands, refugees, and space hobos, for example) by attaching deck partitions inside the hold and adding canned air have these welded shut. Less responsible captains simply pray for a lack of wiring faults.

The habitable section (the cylinder at the back) is wrapped in auxiliary engineering machinery and fuel storage, to the point that it’s only 4m in internal diameter. (If you need to fiddle with most of the engineering systems, you’re going to need a drone, or to take a walk outside.) It’s divided into four decks, from the bow down:

The bridge, which shares space with most of the avionics;

A small living area, which contains the food vat, a tiny galley, the inner door of the airlock, and any luxuries you see fit to squeeze in there. Like chairs;

The crew quarters, which means four vertically-mounted sleep pods, and maybe room for another luxury or two if they’re small;

And a tiny workshop, for any repairs that need doing.

That all sits right on top of the shadow shield and the business end of the drive. If you need to adjust anything below that – well, hope you brought a drone.

But enough of this. You buy this ship, treat her proper, she’ll be with you the rest of your life.

Ain’t sayin’ how long that’ll be, mind.

 

 

Trope-a-Day: Ramscoop

Ramscoop: The classic ramscoop as a starship drive is not a terribly common design feature, since they are (for reasons explained at Atomic Rockets) awfully draggy and power-hungry and thus limited in top speed. Much more common is using the technology as a magnetic sail brake to decelerate a fusion rocket, which braking technology has the advantage of letting you top off your tanks at the same time.

Now, the ramscoop that lets you dip fuel from a suitable gas giant, that is used. Typically on specialized scooper small-craft (mostly carried by warships, exploration ships, and others who may need to refuel away from normal fueling stations that have other, better ways to mine gas) and relatively small ships only, because it requires a specialized hull shape and frame along with heat-sink and radiator capacity to avoid incinerating yourself trying to pull it off, but it’s still relatively common.

Trope-a-Day: Ace Custom

Ace Custom: Happens a lot, aided and abetted by the highly modular and modifiable nature of Imperial technology. (Indeed, both the Navy and the Legions positively encourage the practice – as long as you stick to the standard interfaces and thus do not muck up the supply chain, or drop below the baseline performance – on the grounds that they enjoy keeping their opponents in a state of perpetual confusion and disorientation with regard to what can actually be expected out of their hardware.)

Braking Without Breaking

“Your attention please, gentlesophs and adjuncts; Flight Commander Aimne speaking. In twelve minutes time, we shall commence our deceleration burn to enter Talentar orbit and make rendezvous with Avétal High Port.

“As you may know, the Wanderer Station cycler intercepts Talentar orbit at high transit velocity, and as such making orbit requires a substantial velocity change. Our flight plan therefore mandates that we decelerate at six standard gravities.

“At this time, therefore, please ensure that your acceleration couches are facing full for’ard, upright, and locked. Any loose objects may become dangerous projectiles under thrust; please ensure that any such are stowed. For your comfort and safety, we advise that you remove any objects – especially if heavy or possessed of hard edges or corners – from your front, or upper, pockets, and stow them in the g-safe container provided. If you have a full bladder, you should empty it before the burn commences. If you are not familiar with acceleration couch procedure, this would be an excellent opportunity to study the provided reference data. Any passengers with special medical requirements for high-gravity maneuvers should make themselves known to the purser without delay.

“The thrust alarm will sound one minute before burn commences. Please ensure that you are in your acceleration couch, with restraints fastened, at that time. For your comfort, check that clothing beneath you is smooth and wrinkle-free; minor discomfort is greatly amplified under thrust. Your arms should be resting on the provided rests; do not cross them or place them in your lap. Check that your headrest is properly adjusted and place your head in contact with it, without turning it to either side. Remember that even a short drop at six gravities may cause serious injury. Do not attempt to release your restraints or move about the cabin while the burn is in progress; even if you are able to do so, such activities endanger your fellow passengers.

“If it is necessary to interrupt the deceleration burn for any reason, it may resume at any time without warning, or unanticipated attitude corrections may be required. For this reason, again, please do not release your restraints or leave your acceleration couch until I have announced the end of the maneuver.

“The current temperature on Avétal is 214 absolute, and the vacuum is hard out today. On behalf of the company and the other members of the crew, thank you for flying Amphiplanetary.”

 

Trope-a-Day: Weaponized Exhaust

Weaponized Exhaust: Ah, yes – the Kzinti lesson. What can we say about the Kzinti lesson.

Well, we can say that it is both entirely true and entirely useless (in actual space combat, although on the ground your mileage may differ).

It’s entirely true because, as Larry Niven said, “A reaction drive’s efficiency as a weapon is in direct proportion to its efficiency as a drive,” and obviously torch drives that let you tool around the system at consistent single-digit g accelerations are very efficient drives indeed. Unless you are using incredibly exotic, non-standard-molecular-matter materials, anything you park directly behind a torch drive will evaporate like a pat of butter under a blowtorch. No question.

It’s entirely useless because, as Atomic Rockets points out, “propulsion exhaust is poorly collimated, which means after a very short range it will have expanded and dissipated into harmlessness”. This is even perfectly deliberate as well as unintentional – it’s a basic safety feature for being able to use drives in the vicinity of anything else, ever. As such, unless you’re at point-blank range, you won’t be teaching this particular lesson – and if you let someone reach point-blank range in anything capable of being Kzinted, or make doing so part of your offensive plan, you fail space warfare tactics forever. Note that the inner engagement envelope begins at an entire light-second.

So, basically, if you want to weaponize your drive, stick to something that’s supposed to be collimated. Like launching lasers, or one of these.

Boarders Away!

“There are two types of boarding action: non-contested and contested.

“The former is only moderately terrible: which is to say it is usually carried out in the course of routine inspections or interdictions, or after surrenders, and the starship being boarded has obligingly hove to when requested; one has been able to close with it without problems, and board it through the airlocks or by taking a cutter across; and in all other ways is being cooperative.

“In other words, if it goes wrong – which can happen quite easily even if everyone on the bridge is cooperating – it’s only house-to-house fighting, at point-blank range, in a maze, filled with fragile and dangerous industrial machinery, surrounded by vacuum, with hostile parties in control of the light, air, and gravity. If you’re lucky, no-one will be sufficiently in love with the idea of taking you with them to blow a hole in the reactor containment.

“And then there’s the difficult kind.

“There are actually very few contested boardings. Starship engagements typically happen at long range (light-seconds to light-minutes) and make use of weapons potent enough that surviving vessels are rarely in any condition to be boarded in any sense distinct from salvage and rescue. The exceptions to this general rule come when it is absolutely necessary to recover something valuable from the target vessel – be it hostages, a courier’s package, some classified piece of equipment, or the valuable data stored in the starship’s command computers – which will inevitably be destroyed if the vessel is forced to surrender.

“Achieving this requires a series of highly improbable operations to all go off perfectly in sequence.

“First, the approach: getting to the ship you intend to board; i.e., closing to suicide range, which may involve either surviving the fire from its cohorts, or cutting it out of its formation. This always, however, requires both surviving its fire while closing and depriving it of the ability to evade your approach and to take offensive action against the relatively fragile boarding party.

“So, in the course of matching orbits, you have to disable the drives, disable its weapons systems able to bear on your quadrant of approach, disable the point-defense laser grid (which can slice apart small craft at close range) and defense drones likewise, and disable the kinetic barriers that would otherwise hold off your approach to the hull; all of which you must do with sufficient careful delicacy that you don’t destroy the valuable part of the vessel that you want to claim in the process.

“Second, having achieved this, you must then board the target starship. In a contested boarding, you do not do this through the airlocks: they lead directly to designed-in choke points and people whose job it is to repel boarders, and if they retain attitude control, they can throw a spin on their ship that docking clamps won’t hold against. This is the job of the microgravity assault vehicle, affectionately known as the boarding torpedo, which serves to carry a squad of espatiers into an unexpected part of the target vessel – preferably near enough to the target within the target to make seizure easy, but not close enough to cause its destruction – by ramming, burning through the armor and the pressure hull, and crawling forward until an ideal position is reached or it can go no further.

“(This assumes that you are following the standard model, which people are constantly trying to improve on. One captain I served under rigged saddles for his AKVs and had us ride them to point-blank range of the target, then drop to its hull and take out the laser grid emitters directly. I would not recommend this tactic.)

“Then it’s guaranteed house-to-house fighting, at point-blank range, in a maze, filled with fragile and dangerous industrial machinery, surrounded by vacuum, with hostile parties in control of the light, air, and gravity.

“Third, you must do all of this very fast, for one reason or another. The above operations are not subtle, and your target will know you are trying to board them as soon as you start sharpshooting to disable. If you have terrorists or pirates, this is when they start shooting hostages. If your target is a military starship, though, as soon as they see a boarding attempt, the bridge, damage control central, and the maneuvering room all put one hand on the arming keys for their fusion scuttling charges, and as soon as any two of them conclude that they can’t repel boarders, they’ll scuttle. All you have to do is get sufficiently inside their response loop that you can punch them all out before that happens. (And once armed, it takes positive action to prevent the scuttling, so you can’t take the otherwise obvious short-cut.)

“All of which should explain why espatiers ship out with six times as many warm spares as their naval counterparts.”

– Maj. Esvan Solanel, the 22nd (“Alatian Highlanders”) Imperial Legion, Retd.

Darkness Within (22): Coming Back

FROM: CS GRITFIST (FIELD FLEET RIMWARD)
TO: FIELD FLEET RIMWARD COMMAND (CS ARMIGEROUS PROPERTARIAN)

*** ROUTINE
*** FLEET CONFIDENTIAL E256
*** OVERDUE FOLLOWUP

REF: TASK GROUP R-4-118
REF: OVERDUE STATUS, CS GUTPUNCH

  1. AS PER TASK GROUP ORDERS ORIGINATING CS UNDERBELT, HAVE PROCEEDED WITH COHORT, CS GOUGER, TO LAST KNOWN POSITION CS GUTPUNCH, MALTEVIC SYSTEM.
  2. NO TRACES OF CS GUTPUNCH OR RECENT SIGNS OF COMBAT APPARENT OR RECORDED IN SYSTEM LONGSCAN BUOYS. TRANSPONDER LOGS CONFIRM OUTBOUND GATING TO NARIJIC SYSTEM IN ACCORDANCE WITH PATROL ROUTING.
  3. RESPONSE TO FORWARDED QUERIES TO SYSTEM ENTRY BUOYS IN NARIJIC AND KERJEJIC SYSTEMS INCLUDES NO HIGH-ENERGY EVENTS.
  4. CS GOUGER WILL PROCEED FORTHWITH TO NARIJIC SYSTEM AND COMMENCE SEARCH GRID SWEEP.
  5. SELF WILL PROCEED FORTHWITH TO KERJEJIC SYSTEM AND COMMENCE SEARCH GRID SWEEP.
  6. MORE FOLLOWS.
  7. AUTHENTICATION MORAINE HAMMOCK VAULT SIMMER GOLDEN PAWL / 0x9981ABD43E3ECC22

ENDS.