You’ll Want Us High and Clear

ICED FIRE-CLASS ANTIMATTER TRANSPORT

Operated by: Extropa Energy, ICC
Type: Antimatter Transport
Construction: Islien Yards, ICC

Length: 1,600 km (overall)
Beam: 3,200 km
Dry mass: 39,200 tons (not including cryocels)

Gravity-well capable: No; not even low-orbit capable.
Atmosphere capable: No.

Personnel: 31

  • Flight Commander
  • 3 x Flight Executive/Administrator
  • 3 x Flight Director
  • 3 x Flight Engineer
  • 3 x Propulsion Engineer
  • 3 x Cargomaster
  • 3 x general technicians
  • 2 x riggers/EVA specialists
  • Thinker-class AI

Drives:

  •  3 x Nucleodyne Thrust Applications 1×1 “Sunheart V” fusion torch

Propellant: Deuterium/helium-3 blend
Cruising (sustainable) thrust: 3.5 standard gravities (3.3 Earth G) at nominal load
Maximum velocity: 0.3 c unloaded, 0.1 c loaded (based on particle shielding)

Drones:

  • 3 x general-purpose maintenance drones
  • 3 x tether-climbing rigger drones

Sensors:

  • 1 x standard navigational sensor suite, Islien Yards

Other Systems:

  • 2 x Islien Yards boosted commercial kinetic barrier system
  • Biogenesis Technologies Mark VII regenerative life support
  • 2 x Bright Shadow EC-780 information furnace data system
  • Islien Yards custom dual vector-control core and associated technologies
  • Systemic Integrated Technologies dual-mode radiator system

Small craft:

  • 1 x Élyn-class microcutter
  • 1 x Adhaïc-class workpod

The standard vehicle for ferrying antimatter from the Cirys bubble at Esilmúr to its various places of use, the Iced Fire-class is a starship designed around one core principle, commonly adhered to when dealing with antimatter:

Don’t get any on you.

The core hull itself is much smaller than the dimensions above suggest; a blunted cylinder a mere 252 m in length, including bunkerage. This houses the entire livable volume of the starship, including a dock for the Élyn-class microcutter at the bow, and a bay housing for the workpod. Rather than the typical stern mounting, the three Sunheart V fusion torches are located in nacelles set off from the hull on radiator pylons amidships, located 120 degrees apart; these nacelles are fully vectorable for maximum maneuverability.

The stern of the core hull instead contains the attachment points and winches for a 1,600 km tether, at whose fully extended end is in turn attached the spinhub. This is a simple unit containing monitoring equipment and a centrifugal ring, to which in turn are mounted eight further attachment points and associated tethers, terminating in heavy couplings. It is to these couplings that antimatter cryocels are mounted during loading, and dismounted upon arrival. In flight, the action of the centrifugal ring maintains appropriate safe distance between the core hull and the cryocels, and between the cryocels themselves, while also ensuring that jettisoned cryocels will move away from the main body of the starship in the event of containment failure.

 

Covered In Bees

HURRICANE-CLASS DRONE BATTLESHIP (CARRIER)

Operated by: Empire of the Star
Type: Drone Battleship, General Operations
Construction: Palaxias Fleet Yards

Length: 2.3 km
Beam (avg.): 0.8 km
Dry mass: 2,900,000 tons

Gravity-well capable: No.
Atmosphere capable: No.

Personnel: 1,294

  • 396 crewers
  • 514 flight operations
  • 384 espatiers
  • Thinker-class AI

Drives:

  • Imperial Navy 3×3 “Neutrino Dawn” antimatter pion drive
  • Nucleodyne Thrust Applications 4×4 “Nova Pulse” fusion torch

Propellant:

  • Deuterium slush/metallic antideuterium
  • Deuterium/helium-3 slush blend

Cruising (sustainable) thrust: 5.6 standard gravities (5.2 Earth G)
Peak (unsustainable) thrust: 6.6 standard gravities (6.1 Earth G)
Maximum velocity: 0.3 c (rated, based on particle shielding, with flight deck doors closed)

Drones:

  • 43,200 x AKVs (loadout varies by mission, typically Daggerfan-class)
  • Associated thrust packs and modular swapout payloads, by mission
  • 64 x “Buckler VI” point-defense supplementary drones, Artifice Armaments, ICC
  • 32 x “Rook” tactical observation platforms, Sy Astronautic Engineering Collective (with supplementary IN hardware)
  • 64 x general-duty modular drones (not counting flight operations hardware)

Sensors:

  • 3 x independent standard navigational sensor suite, Cilmínar Spaceworks
  • 6 x [classified] enhanced active/passive tactical sensory suite, Sy Astronautic Engineering Collective
  • Imperial Navy tactically-enhanced longscan

Weapons (Auxiliary):

  • 96 x “Slammer III” dual turreted mass drivers (local-space defense)
  • Artifice Armaments, ICC “Popcorn” point defense/CQB laser grid

Other systems:

  • 3 x Artifice Armaments, ICC cyclic kinetic barrier system
  • Biogenesis Technologies, ICC Mark VII regenerative life support (multiple independent systems)
  • 3 x Bright Shadow, ICC custom-build megaframe data system, plus multiple EC-1140 information furnaces for sectoral control
  • AKV repair facilities
  • 3 x Extropa Energy, ICC “Calviata” second-phase fusion reactors
  • 6 x Imperial Navy AKV tactical management suite
  • 3 x Imperial Navy DN-class vector-control core and associated technologies
  • 3 x Nanodynamics, ICC “Phage-a-Phage” immunity
  • 6 x modular swapout regions (large)
  • Systemic Integrated Technologies, ICC high-capacity thermal sinks and dual-mode radiative striping; 3 x deployable droplet heat radiators
  • Tactical bridge

Small craft:

  • 4 x Nelyn-class modular cutters
  • 2 x Ékalaman-class pinnace/shuttle (atmosphere capable)
  • 16 x Élyn-class microcutter
  • 32 x Adhaïc-class workpod

(You’ll notice the obvious similarities to the Leviathan-class dreadnought in systems installed, which should come as no surprise; these two came off the drawing board at roughly the same time. And if you’re wondering why a BB-sized carrier has a DN-sized vector-control core – well, you’ll note that the much more tightly packed supplies of, for example, bunkerage plus AKV bunkerage, plus the need to propel all those AKVs, make it mass significantly more than a Leviathan in practice. Carriers tend to be thus.)

The core hull of the Hurricane-class drone battleship (carrier) is divided into five segments: from bow to stern, the flight operations section, the AKV bunkerage, the command section, the bunkerage, and the propulsion bus, laid out tail-lander style. The flight operations section, by design, is a hexagonal prism, flat faces to dorsal and ventral, and the other ship segments follow this pattern.

Attached to this on the starboard side, extending to dorsal and ventral of the core hull, and running from 100 m ahead of the flight operations section (to give AKVs exit and entrance cover) back to cover the first 100 m of the bunkerage, is the starship’s “buckler”. The core hull of the Hurricane-class is relatively lightly armored for an IN vessel, since carriers are intended, doctrinally, to stay out of CQB and mass conservation supervenes. However, to provide protection against long-distance fire in the outer engagement envelope, as a less maneuverable ship class, the buckler – heavy armor plate connected to the core hull by shock-absorbing trusses – covers and extends slightly beyond the two starboard facets, providing additional protection for as long as the vessel maintains the proper attitude.

The flight operations section at the bow, taking up the first half-kilometer of the ship, is effectively a single large flight deck, opened to space by an armored spacetight door in the for’ard hull. (Unlike smaller flight decks, this region cannot be pressurized.) The 43,200 carried AKVs occupy hexagonal cells clustered on the inner hull to port, starboard, dorsal, and ventral from which they launch themselves, while a small conventional flight deck at the aft end of the section provides space for the Hurricane‘s small craft. The after hull of the flight operations sections is heavily armored, to provide what protection it can against a lucky shot penetrating the flight deck.

Immediately behind the flight operations section is the AKV bunkerage section, which houses fuel and propellant, along with ammunition and other consumables, for the carried AKVs, permitting refueling and rearming. This is the most protected area of the ship, as AKV fuel and ammunition tends to be highly volatile.

The command section, the primary habitable area of the starship, is a relatively small area sandwiched between the AKV bunkerage and the carrier’s own bunkerage, also protected behind the buckler, and housing both the starship’s own operations and the majority of the outsize flight operations department. From dorsal and ventral, sensor towers extend beyond the buckler, allowing line-of-sight sensing and communications with the battlespace without exposing the core hull.

(As a side note, the Hurricane-class, like most large carriers, is an example of the IN’s dual command system. The starship itself is commanded by a Flight Commander, ranked Captain [O-7], from the line branch, while the AKV wings are commanded by a Group Captain, an equivalent rank. Overall command of both is held by a Mission Commander, ranked Commodore [O-8].)

Aft of these, a conventional bunkerage section and propulsion bus, equipped with droplet radiators for primary cooling, fills out the remaining length of the vessel.

Scattered about the length of the vessel is the same heavy-duty (“Popcorn”) point-defense grid used on the Leviathan-class dreadnought, along with 96 small turreted mass drivers – similar to those used on lighter IN classes – for heavier local-space defense.

(They are not intended as offensive weapons; the carrier has 43,200 of those in its AKVs, and would-be Flight Commanders who can’t resist the urge to take their ships into close-quarters battle are redirected towards frigates, destroyers, and other roles where such is (a) tactically useful and (b) much less likely to get one either cashiered for gross incompetence or relieved of command by an XO for whom it is not a good day to die.)

 

Leviathan, Awake

LEVIATHAN-CLASS DREADNOUGHT

Operated by: Empire of the Star
Type: Dreadnought, General Operations
Construction: Palaxias Fleet Yards

Length: 3 km
Beam (avg.): 0.8 km
Z-Beam (avg.): 0.6 km

Dry mass: 2,500,000 tons

Gravity-well capable: No.
Atmosphere-capable: No.

Personnel: 6,736

  • 4,968 crewers
  • 1,768 espatiers
  • Thinker-class AI

Drives:

  • Imperial Navy 4×2 “Neutrino Dawn” antimatter pion drive
  • Nucleodyne Thrust Applications 4×4 “Nova Pulse” fusion torch

Propellant:

  • Deuterium slush/metallic antideuterium
  • Deuterium/helium-3 slush blend

Cruising (sustainable) thrust: 7.2 standard gravities (6.7 Earth G)
Peak (unsustainable) thrust: 8.4 standard gravities (7.8 Earth G)
Maximum velocity: 0.3 c (rated, based on particle shielding)

Drones:

  • 144 x AKVs (loadout varies by mission, typically Daggerfan-class)
  • 144 x add-on thrust packs for AKVs
  • 72 x “Buckler VI” point-defense supplementary drones, Artifice Armaments, ICC
  • 72 x “Rook” tactical observation platforms, Sy Astronautic Engineering Collective (with supplementary IN hardware)
  • 72 x general-duty modular drones

Sensors:

  • 3 x independent standard navigational sensor suite, Cilmínar Spaceworks
  • 18 x [classified] enhanced active/passive tactical sensory suite, Sy Astronautic Engineering Collective
  • Imperial Navy tactically-enhanced longscan

Weapons (Primary):

  • 4800/2400 mm custom axial heavy mass driver, Artifice Armaments, ICC

Weapons (Secondary):

  • 4 x 4800/2400 mm custom heavy mass drivers, Artifice Armaments, ICC
  • 4 x “Black Lightning” axial grasers, Artifice Armaments, ICC

Weapons (Tertiary):

  • 64 x 2400/1200 mm turreted mass drivers (32 capable of broadside use), Artifice Armaments, ICC
  • 8 x 2400/1200 mm turreted mass drivers (rear-firing for kilt defense), Artifice Armaments, ICC
  • 32 x “Flashburn” turreted heavy lasers, Artifice Armaments, ICC
  • Artifice Armaments, ICC “Popcorn” point defense/CQB laser grid

Other systems:

  • 3 x Artifice Armaments, ICC cyclic kinetic barrier system
  • Biogenesis Technologies, ICC Mark VII regenerative life support (multiple independent systems)
  • 3 x Bright Shadow, ICC custom-build megaframe data system, plus multiple EC-1140 information furnaces for sectoral control
  • Class IV starship repair facilities
  • 8 x Extropa Energy, ICC “Calviata” second-phase fusion reactors
  • Flag bridge
  • 4 x Imperial Navy command communications/tactical networking suite
  • 4 x Imperial Navy DN-class vector-control core and associated technologies
  • 3 x Metric Engineering, ICC “Gloaming” ray shielding system
  • 3 x Nanodynamics, ICC “Phage-a-Phage” immunity
  • 32 x modular swapout regions (large)
  • Systemic Integrated Technologies, ICC high-capacity thermal sinks and dual-mode radiative striping

Small craft:

  • 8 x Reaver-class starfighters, with own AKVs
  • 8 x Nelyn-class modular cutters
  • 4 x Ékalaman-class pinnace/shuttle (atmosphere capable)
  • 16 x Élyn-class microcutter
  • 16 x Traest Sargas-class troop transport
  • 32 x Adhaïc-class workpod
  • 32 x Marlinspike-class boarding torpedo
  • 32 x Sledgehammer-class drop shuttle

From without, the Leviathan-class dreadnought resembles a slender wedge, a dagger-blade without a hilt. It is, of course, rather larger than virtually all equivalent dreadnought classes and even some superdreadnought classes seen elsewhere, in keeping with the Empire’s naval construction policy of “shock and awesome”.

This should come as no surprise to anyone, since the realities of armoring such a vessel mandate such a glacis, and as such virtually all ships of the plane, of whatever origin, share this common feature. The Leviathan mixes this up slightly, having a change in ratio along its length that gives the hull a subtle curve and the ship entire a forward-leaning, sleek and hungry look.

(Although those who serve aboard Leviathans, especially back in the maneuvering sector, tend to describe their workplace as the ship’s “fat ass”.)

As is also usual, the apparent outer hull of the vessel is entirely composed of armor plating, which in the case of the Leviathan is a little over 30m thick, comprised of multiple layers of heavy plate, Whipple foam, radiation-absorbent material, thermal superconductors, dilatant shock gel, flexible spreader trusses, and other necessities for survivability in the modern high-energy battlespace, many of which remain classified.

(The important thing to remember about this armor plating is that it is not there to protect against a direct hit from an opposing capital ship. No practicable material will do that. It’s there to protect against the spallation debris left behind after your point-defense grid sweeps the sky like the hand of an angry laser-spewing god.)

This armor serves as a backup to the triple-layered cyclic kinetic barrier system with which the Leviathan is equipped, along with the likewise triple-layered ray shielding to protect against photonic attack.

The majority of the space within this outer hull is unpressurized volume, occupied by machinery space, bunkerage, stores (tanks and unpressurized cargo holds), accessways, robot hotels, and magazines. The habitable volume is represented by a relatively small (roughly equivalent to a 232-storey building, laid out tail-lander style) cylinder buried deep within this, above the axial passage for the primary mass driver, with two attendant counter-rotating gravity rings providing space for gravity-requiring special facilities. Below and to port and starboard of this passage can be found the eight fusion reactors providing non-thrust power to the Leviathan.

In addition to the primary (axial) heavy mass driver, the Leviathan mounts four secondary heavy mass drivers of only slightly lower power along its dorsal-ventral centerline, spread out at 15 and 30 degrees off-axis (although with off-bore firing capability), along with four heavy grasers clustered around, and aligned to, the axial primary.

Tertiary weapons systems consist of 64 turreted mass drivers and 32 turreted heavy lasers, of which half can slew far enough to be capable of broadside firing. An additional eight turreted mass drivers are mounted on the stern for kilt defense, should the prospect of attacking through, or at best in close proximity to, the emissions plume of the Leviathan‘s 24 torch drives not be sufficient deterrent. Finally, the Leviathan is equipped with the Artifice Armaments “Popcorn” laser grid for point-defense and CQB purposes, ensuring that anyone foolish enough to close to point-defense range will have mere microseconds to contemplate their folly before vaporizing in one of the most spectacular coruscations known to sophontkind.

Also pressurized are portions of the “docks and locks” sections to port and starboard, 500 meters for’ard of the drives, which house the Leviathan‘s small craft complement. These are buried beneath the starship’s outer hull armor, which is designed to retract under non-combat conditions to provide ingress. In light of this, the multiple AKV wings and drones are launched via dog-leg tubes through the dorsal and ventral armor, and recovered – if this is necessary during an engagement – when circumstances permit turning broadside to the enemy and recovering through the far-side landing bay.

As a dreadnought, the Leviathan is equipped with a flag bridge and communications/tactical mesh suite for task force command; with the capability to effect repairs on smaller vessels of its task force; with the ability to deploy starfighters for patrol or remote operations missions; and with a substantial espatier force and the means to deploy them, whether in boarding operations or for groundside raids.

 

To The Moon!

(Turns out the first ship I want to do isn’t one of the ones anyone asked for. Oh, well.)

SILVERFALL-CLASS LUNAR EXPLORER – BLOCK II

Operated by: Spaceflight Initiative
Type: Early exploration vessel.
Construction: Spaceflight Initiative.

Everyone’s heard of the Silverfall-class explorer, the starship that first carried eldrae from Eliéra to its moons. (A surprisingly large number of them have visited the museum out on Seléne where Silverfall Four — Moondancer — rests in state out on the regolith, where she was flown to her resting place by her original crew, and is kept in flight-ready condition by her many admirers.)

The design discussed here is of the Block II variant of the Silverfall-class, which incorporates the modifications made to improve performance and livability after studies performed on Silverfall Zero and Silverfall One, and whose two examples can be considered representative of the class, including as they do the actual craft, Moondancer, which made the first landing on Seléne; later design revisions included a number of specialized variants, but made no further changes to the basic design.

Length: 42.2 m, of which:

  • Mission module: 12.2 m.
  • Engineering frame: 18 m (overlaps with propulsion module)
  • Propulsion module: 12 m
  • Shock absorbers and pusher/ground plate: 12 m

Beam: 12 m (mission and propulsion module); 22m (widest point)
Mass (fueled): 616,200 kg

Gravity-well capable: Yes.
Atmosphere-capable: No.

Personnel: 2 required, as follows:

Flight Commander
Flight Director/Engineer

Accommodates 6 further mission specialists.

Drive: Silverfall-specific fission pulse drive with laser trigger; cold-gas attitude control and landing system.
Fuel: Plutonium coated fuel pellets.
Cruising (sustainable) thrust: 2.4 standard gravities
Delta-v reserve: 16,800 m/s

Drones: Simple automation only.

Sensors:

Star tracker
Inertial tracking platform
Passive EM array
Short-range collision-avoidance and docking radar
Mk. 1 Eyeball

Weapons: None, unless you count the drive.

Other systems:

Thorium pebble-bed power reactor
Omnidirectional radio transceiver
Communications laser
Whipple shield (habitable area only)
Canned (non-regenerative) life support; CO2 scrubbers
Redundant flight control systems
NaK pumped-loop high-power radiators and maneuvering heat-sinks
NH3 low-power radiators

Small craft: None.

DESCRIPTION

The original Phoenix-class orbiter was once described as an explosion in a girder factory, and its smaller cousin, the Silverfall, maintains much of that look, despite at least some improvements in elegance between the designs. That, and that unlike the Phoenix, the Silverfall was designed as a pure space vessel, intended to be built at and operate from Oculus Station in Eliéra orbit, and to land only on airless Seléne and Elárion.

The layout of the Silverfall-class can be divided into four sections: the upper mission module, the engineering frame which sits atop and wraps around the propulsion module, and the shock absorber/pusher plate section at the bottom.

At the top, the mission module is divided into three tail-lander decks with plenum space in between. The uppermost deck, topped by a blunt cupola and surrounded by the various navigational and communications antennae, contains semicircular bridge and mission management sections, surrounded by the ship’s avionics. From it, an axial passage descends through the next two decks, terminating in a small engineering space (housed in an aft projection) where the mission module connects to the primary thrust truss of the engineering frame. A secondary access tube, normally depressurized, runs down from this passage through the engineering frame.

The second deck houses three pie-segment areas; the ship’s laboratory, workshop, and main stowage area. Opposite the stowage area, between the laboratory and workshop, a secondary airlock provides maintenance access while in flight to the exterior of the ship (with a ladder down to the upper levels of the engineering frame), and is the main access point when the starship is docked.

(Opposite this airlock, centered on the mission module’s vertical axis, is the gold plaque bearing the Imperial Star and the stylized rocket-and-crescent-moon of the Spaceflight Initiative, with beneath them the various names and logos of the various contributors making the Silverfall mission possible.)

The third, lowermost deck contains the crew quarters, divided into a number of modular pods, along with the galley, central mess, ‘fresher, and a small medical bay.

Six meters below the mission module is the propulsion module, a heavy steel capsule containing the guts of the nuclear-pulse drive that powers the Silverfall. For the most part, however, it is hidden by the engineering frame which wraps around and atop it, a mesh of trusses containing, most notably, the six pellet silos, evenly spaced around the ship, containing the plutonium fuel pellets, and the spherical tanks of cold-gas propellant and life-support supplies.

The lower surface of the engineering frame (along with that of the propulsion module) is the solid sheet of the protective shadow shield, protecting the upper sections of the craft from radiation produced by the pulse drive. The secondary access tube descending from the base of the mission module connects to the primary airlock, located directly above the edge of the shadow shield vertically beneath the secondary airlock, and from which a descent ladder can be lowered once the drive shroud is in place.

At its edges, laser modules extend past the edge of the shield to trigger the explosive coatings of the fuel pellets; just within those edges, sealed slots permit the segmented drive shroud to be lowered after landing, surrounding the mechanics of the shock absorbers and pusher plate, to protect disembarked astronauts from residual drive radiation.

 

The Sapphire Coloratura: Revealed!

Inspired by a passing comment on the Eldraeverse Discord, we now present a galari starship, the Sapphire Coloratura-class polis yacht; the favored interplanetary and interstellar transport of all sophont rocks of wealth and taste.

SAPPHIRE COLORATURA-CLASS POLIS YACHT

Operated by: Galari groups requiring luxurious private transit.
Type: Executive polis yacht.
Construction: Barycenter Yards, Galáré System

Length: 96 m (not including spinnaker)
Beam: 12 m (not including radiators)

Gravity-well capable: No.
Atmosphere-capable: No.

Personnel: None required (craft is self-sophont). Can carry an effectively arbitrary number of infomorph passengers.

Main Drive: Custom “dangle drive”; inertially-confined fusion pellets are detonated behind a leading spinnaker, the resulting thrust being transferred to the starship via a tether.
Maneuvering Drive: High-thrust ACS powered by direct venting of fusion plasma from power reactors; auxiliary cold-gas thrusters.
Propellant: Deuterium/helium-3 blend (pelletized aboard for main drive).
Cruising (sustainable) thrust: 7.2 standard gravities
Peak (unsustainable) thrust: 7.5 standard gravities
Maximum velocity: 0.12 c (based on particle shielding)

Drones:

4 x galari body-crystals; since the galari are ergovores, any galari passenger or AI system may use these for EVA purposes.

Sensors:

1 x standard navigational sensor suite, Barycenter Yards
1 x lidar grid and high-sensitivity communications laser grid, Barycenter Yards

Weapons:

Laser point-defense grid.

Other Systems:

  • Cilmínár Spaceworks navigational kinetic barrier system
  • 4 x Bright Shadow secondary flight control systems
  • Kaloré Gravity Products type 1MP vector-control core
  • Systemic Integrated Technologies flux-pinned superthermal radiator system

Small craft:

5 x minipoleis (no independent drive systems; local accumulators only)

DESIGN

The Sapphire Coloratura was intended to be a shining jewel in the crown of galari starship design, so it is perhaps fitting that it indeed resembles a shining jewel, the translucent crystal of its main body throwing sparkles of rainbow light everywhere when it chooses to fly close to stars, or when it is illuminated by the fiery blasts of its main drive.

The main body of the ship is similar to, in many ways, the galari themselves; a sixteen-faceted crystal, with eight long facets facing forward to the bow tip, and short, blunter facets facing aft towards the mechanical section, a gleaming metal cylinder with a rounded-off end taking up the remaining two-thirds of the starship’s length.

To proceed from fore to aft, the bow tip of the ship is capped with metal, housing the core mechanisms of the dangle drive; the sail deployment system, tether terminus, pellet launcher, and ignition lasers.

From our Earth perspective, this drive is very similar to the Medusa-type Orion; thrust is delivered to the starship via a 216 m diameter spinnaker “sail” on a tether ahead of the craft. Rather than dedicated pulse units, the drive projects pelletized D-3He charges ahead of the craft to the focal point of the spinnaker, where inertially-confined fusion is initiated by the ignition lasers, reflected to surround the pellet by the inner surface of the spinnaker. The resulting nuclear-pulse detonation accelerates the craft, smoothed out by the stroke cycle of the tether (see above link).

The main crystal body of the craft is essentially a solid-state piece – save for cooling labyrinths and the axial passage required by the drive – of galari thought-crystal: a substrate which holds the ship’s own intelligence, those of all passengers and any crew needed, along with whatever virtual realms, simulation spaces, or other computational matrices they may require. As such, there is little that can be described by way of an internal layout; most polis-yachts are unique in this respect.

The “waist” – broadest point – of the body is girdled by a machinery ring, containing within it the four fusion power reactors (multiple small reactors were preferred for extra redundancy by the designer) with the associated ACS, and at points between them, the backup flight control systems, navigational sensor suite, and other small auxiliary machinery.

At the aftmost point of the main body, where the blunter end of the crystal joins the mechanical section, eight crystal spikes project, symmetrically, from the point of junction. These are left hollow by the manufacturer and equipped with tip airlocks to provide a small amount of volume for cargo space and aftermarket customization; if non-ergovore passengers are expected, two of these are typically converted into quarters and life-support. A central chamber where the spikes meet serves as a body and robot hotel.

Entering the mechanical section, an accessible chamber at the forward end of the cylinder provides accommodation for the vector-control core and larger auxiliary machinery, including the thermal control system. The remainder of the section is entirely made up of bunkerage for the reactors and main drive.

The galari have never, it should be noted, shied away from making maximal use of vector control technology. This is particularly notable in the Sapphire Coloratura‘s design in two areas:

First, its radiators, which cloak the center of the mechanical section with a divided cylinder of gridwork, individual carbon-foam emitting elements held together and in place away from the hull by vector-magnetic couples, linked back to the ship itself only by the ribbons of thermal superconductor transmitting waste heat to them; and

Second, by the minipoleis that the Coloratura uses as small craft. Resembling nothing so much as miniature duplicates of the starship’s main body, these auxiliary blocks of thought-crystal are held in place orbiting the main body of the ship – often in complex patterns, even under full acceleration – connected only by vector-magnetic couples and whisker-laser communication.

That is pure ostentation.

 

The Range of Range

“You will hear it said that lasers have ‘a pathetically low range’ and are ‘suitable only for point defense and the inner engagement envelope’. To put this statement into its proper context, one must understand the proper scale of starship engagements; i.e., that the pathetically low range in question is approximately a light-second, or to put it another way, that the enemy vessel must close to within a distance roughly equal to twenty-five diameters of your home planet before you can engage them with this notoriously short-ranged weapon.”

The Dirtsider’s Guide to Interplanetary Warfare

Not For Kitchen Use

At its simplest, a point-defense laser grid is a system of hundreds of meshed, phased-array, variable-frequency, plasma laser elements (on its parent starship, these are the glossy black domes speckling the hull), capable of outputting an arbitrary number of variable-power beams, limited only by the capacity of the controlling computer, along an equally arbitrary number of bearings.

In its most benign civilian application, the laser grid protects the hull against incoming mass, by vaporizing small particles entirely, and by causing outgassing of the surface elements of larger ones in such a way as to produce thrust sufficient to redirect their course – acting, in effect, as a portable laser broom. A standard military laser grid fulfils this function on a larger scale, vaporizing and redirecting incoming kinetic slugs using the same essential principle, while penetrating and disabling AKVs. Such a grid is typically able, in full-autonomic mode, to keep the volume of space within a dodeciad miles of the parent starship clear of all material objects not explicitly tagged by IFF as friendly.

A military-grade grid, of course, has certain other applications. One, for example, is serving to propel various otherwise-unguided packages by use of the grid to heat inert ablative propellant attached to them, functioning as the power element of a laser thermal drive. Another, less advertised, is that of dealing with enemy starships that have been disabled, but which decline to surrender and which do not possess any unusual value to be recovered by an opposed boarding action: specifically, a disabled starship within effective range of a laser point-defense grid can be conveniently sliced and diced into effectively-inert fist-sized cubes.