Eyes and Ears

So, let’s now turn to the topic of sensors, and what exactly is in that Cilmínár Spaceworks AE-35 “standard navigational sensor suite” built into the majority of current-era starships. There are two primary groups of sensors incorporated into such a suite, referred to as “navigational” and “tactical” – even on civilian vessels – sensors, respectively, along with cross-feeds from the communications systems.

Navigational

The first of these groups, the navigational sensors, are those primarily used to locate the starship itself in space and, to a lesser extent, time. Included in a standard suite are the following:

Orbital Positioning System

The Orbital Positioning System, considered the primary source of navigational data within settled space, makes use of beacons located on stargates, and orbiting in designated positions within the system, each broadcasting a unique identifying code and sequence signal. By correlating signals received from these satellites with the reference data published in astrogators’ ephemerides, or downloaded from the stargate navigation buoy on system entry, a starship’s position within the inner and the majority of the outer system can be determined precisely, although accuracy does fall off as the Shards are reached.

Star Tracker

As a backup to the Orbital Positioning System, and as the primary method of navigation in undeveloped star systems, the navigational suite includes a star tracker. This system maintains a sunlock, a continuous bearing to the local system primary, and a number of starlocks, continuous bearings to a number of well-known nearby stars, identified spectrometrically. Again, by correlating these bearings with ephemeris data, a starship’s position can be determined with considerable accuracy.

Pulsar Navigational Reference

A final backup is provided by the Pulsar Navigational Reference, which maintains continuous bearings to a number of pulsars located within the local galaxy, using the same principles as the star tracker. While unsuitable for fine navigation (due to the low available parallax of such distant reference points) it is of use in providing confirmatory gross position data.

Inertial Tracking Platform

The inertial tracking platform provides a continuous check on all other forms of navigation, a bridge during switches between beacons and starlocks, and a navigational reference for fine maneuvering; using a complex of accelerometers and gyroscopes linked to the starship’s drive systems, the ITP integrates angular velocity and linear acceleration into a continuous record of change of position and change of velocity. In the latter role, it operates alongside the timebase receiver to provide the relativistics officer with the information required to differentiate wall-clock time and empire time.

Imperial Timebase Receiver

The timebase receiver receives the continuous timebase reference signal transmitted by all stargates, based on their temporal consensus, which defines the empire time reference frame: i.e., the pseudo-absolute time frame without reference to the relativistic maneuvering of individual starships (or indeed celestial bodies); it provides an external temporal reference separate from the starship’s internal wall-clock time.

Tactical

The second of these groups, the tactical sensors, are those which concern themselves rather with the environment around the starship than with the starship’s position. Those commonly included, which is to say ignoring specialized scientific sensors, include:

All-Sky Passive EM Array

The sensor with the most general utility is assuredly the all-sky passive EM array. The latest ASPEMA designs consist of a complex array of receptor elements woven through the outer layers of much of a starship’s hull surface, operating together to function as a single large sensor. An ASPEMA’s elements are designed to maintain a consistent watch across the majority of the EM spectrum, from low-frequency RF through infrared, visible light, and up to gamma-rays. A properly configured ASPEMA gives the sensor operator a clear, moderate-resolution view of everything radiating EM within the star system, which is everything worth speaking of.

Passive EM Telescope

When higher resolution is required for identification, or profiling of a target or its emissions, the sensor suite also incorporates one or more passive EM telescopes capable of significantly higher resolution and sensitivity which can be pointed at specific targets.

Active EM Radar

When precise ranging is called for, or the emissions of the target are insufficient to permit profiling with the passive EM telescope, it is possible to “go active”. The active EM radar usually makes use of the same reception hardware as the passive EM telescope; it merely transmits a directional RF pulse and receives its reflection from the target, the time of travel providing the ranging information. The disadvantage of this technique, of course, is that the use of the active EM radar announces one’s presence to all other starships in the system, even beyond typical passive detection ranges.

Gravitometer

The gravitometer provides an effective and highly sensitive way to measure the local degree of space-time curvature, both absolute and differential. This can be used to provide a variety of information, including current depth with the gravity well (or altitude) when near objects of known mass, bearings to high-mass objects, and detection profiles of gravity waves, including those generated when a stargate is used by another starship in-system.

Neutrino Detector

The neutrino detector chiefly provides supplementary information. Nucleonic reactions are rich sources of neutrinos; as such, other than when swamped by stellar emissions, neutrino emissions can indicate the presence of operating fusion reactors, torch drives, or other nucleonic equipment commonly found aboard starships. While providing limited additional data on its own, although aiding in the profiling of starships by their power plant, it has the advantage over other sensors that neutrinos interact very little with other matter, and as such the neutrino detector can determine the presence of a signal otherwise occluded by a lunar or planetary body.

Docking Radar

A high-frequency omnidirectional radar system designed for use at short range, the docking radar is a specialized radar system intended to provide precise location and range information while docking, operating near habitats, or otherwise in crowded orbits.

Imaging Lidar Grid

Offering a significantly higher resolution than radar, a starship lidar grid is primarily used for two purposes: first, producing a surface map of asteroids or potential landing sites, or a hull map of an unidentified vessel or hulk to look up in the database; and second, since being hit with a high-intensity lidar pulse will overwhelm most EM-based sensors and can even trigger hull thermal alarms, as a very effective way to yell “Hey, stupid!” at starships which aren’t answering standard hails.

Communications (integrated)

Fed across from the communications subsystem are two other important sources of navigational data:

Transponder

The first of these is transponder data received from other starships. A transponder broadcast must include that starship’s identity, the current time, and certain important parameters (safety distance from its drives, whether it’s carrying certain hazardous cargoes, registration, and so forth).  Ships currently operating under positive control include a subcode – a “squawk” – designated by space traffic control authorities for their reference, and a transponder can also signal various status codes, indicating distress situations in progress, communications failures, hijackings, and other such. The majority of transponders also transmit the ship’s own determination of its position.

IIP Interface

While an extranet feed may seem frivolous for astrogation purposes, it is an essential feature of…

Longscan

The most notable common characteristics of all of these sensor systems is that they operate at the speed of light, or more slowly, and that they operate from a single point in space, which imposes a tremendous limitation on what information an astrogator may have available. The solution to this is longscan.

Using defined extranet protocols, cooperating starships broadcast their sensory gestalt to other starships in the system via the standard IIP communications relays, as do other sources of sensor data, such as habitats, stargates, and navigation satellites. Using this information, along with predictive AI and astrogator-assisted extrapolations of what each starship or other object visible has done or will do since the last update, the longscan system on each starship produces an overview of the current situation including that information which that ship could not itself sense, or which is still in transit to it, duly annotated with probability and reliability estimates for their future actions.

– Technarch Apt’s How-It-Works: Starships

Truth In Nomenclature

damnfool switch (n.): Engineering / aerospace jargon. Damnfool switch is an alternate term for the Master Envelope Interlock Disable switch; i.e., that switch which disables the hardwired safety features preventing the pilot, sailing master, or other operators from commanding maneuvers or equipment operations known to cause damage to, or the potential destruction of, the vehicle. (See also: redlining.)

The damnfool switch acquired its sobriquet due to the near-universal consensus that not only would only a damn fool disable said interlocks in anything other than a dire and imminent emergency, but that most of the people who have disabled them under such circumstances were also damn fools at the time.

idiot light (n.): The warning light, usually located next to the Master Alarm indicator, that indicates that the damnfool switch has been engaged; so named because the illumination of the idiot light indicates that an idiot surely must be in command of the vehicle.

– A Star Traveler’s Dictionary

Gettin’ Clean

The primary hygiene component of a standard shipboard ‘fresher is a cylindrical translucent compartment, resembling a drug capsule set on its end, with a watertight sealing door. At top and bottom, gratings conceal powerful counter-rotating fan/turbine units.

In dynamic mode, these fan/turbines are engaged to blow (at the nominal “top”) and suck (at the nominal “bottom”) a water/air colloid past and over the bather at configurable velocities ranging from strong breeze to hurricane-strength wind, providing the water with a functional simulation of gravitic flow – a “shower”. To conserve water where necessary, many ‘freshers recirculate filtered water while in operation, requiring fresh water input only for the initial fill and the final rinse cycle.

In static mode, the gratings close and the capsule itself fills entirely with water – a microgravity “bath”.

In the former mode, breathing while bathing is, at best, difficult; in the latter, it is downright impossible. Early-model ‘freshers included a built-in breathing mask connected to ship’s life support to ameliorate this problem; in these days of respiratory hemocules which enable the modal transsoph to hold their breath for over an hour, ‘fresher designers tend to assume that this will not be a problem. Those without such hemocules must, therefore, remember to take a portable breather with them when bathing.

– The Starship Handbook, 155th ed.

Docking

The current standard for docking adapters in Imperial space, suitable for both docking and berthing, is defined by IOSS 52114, the Imperial Universal Starship Interface (IUSI).

The standard defines androgynous docking adapters in three standard sizes (IUSI-C/crawlspace, IUSI-P/gangway, and IUSI-F/freight container), in both standard (containing a transfer passage and data interface capability) and extended (containing additionally power and utility transfer connections) formats. These adapters are specifically designed to operate with Imperial-standard airlocks (per IOSS 51008) but can be fitted over any of a wide variety of airlock and/or spacetight door standards.

Standard and extended adapters are mutually compatible, with the redundant connections on the extended adapter fitting into sealing caps on the standard adapter. While adapters of differing sizes cannot directly connect, collapsible connection modules for this purpose are available at many starports or compilable from freely-available recipes.

While IOSS 52114-compliant docking adapters are commonly used in most polities throughout the Worlds, in selected regions and on the fringes non-compliant docking adapters are found in use. For this situation, IOSS 52114 also defines the IUSI-NC universal adapter, consisting of an inflatable tunnel with an IUSI-compatible adapter at one end, and an open end coated with a nanotechnological bonding compound capable of adhering to all commonly used hull materials, releasing upon mesh command without altering the attachment surface. The IUSI-NC can be installed during an extravehicular activity when pressurized transfers are required.

– The Starship Handbook, 155th ed.

Trope-a-Day: Ramming Always Works

Ramming Always Works: Mostly averted.  At the distances at which most space combat happens, you’re lucky to be able to set a course with accuracy enough to make ramming work, and the other ship has plenty of time to either evade you or explode you.  This makes it a tactic most useful to AKVs (see Action Bomb) which have run out of ammunition and as such are working as k-kill missiles, right then.

Could be played straight in some limited-range encounters, as seen in planetary orbit or at choke points (meaning, primarily, stargates), but then the other problem results which is, well, it does actually work too well – the usual result is a total kill of both ships involved in the collision, extravagant fireballs included, and lots of highly dangerous debris moving in unpredictable vectors, right next to the asset defining the choke point.  This is rarely an economic or admiralty-approved tactic, since starships are expensive, starship crews more so, and cleanup most of all – and let us not even mention Kessler Syndrome.

Trope-a-Day: Point Defenseless

Point Defenseless: Utterly averted.  The automated point-defense systems – usually plasma lasers or other Energy Weapons, for their speed and reaction time, gridded across the hull – will rip to pieces just about anything that gets within their range in an colorful orgy of photonic destruction, unless it’s extremely fast, capable of turning on a dime, and very smart about doing both.  (This is another reason why meat-piloted Space Fighters don’t exist, since AKVs can at least try to be competitive in this close-combat environment.)  Even then, defeating them is a matter of wearing them down (until heat buildup, primarily, lessens their efficacy) and swamping them with sheer volume of incoming fire.

Starship Scuffles: Location, Location, Location…

So, while it now seems to have disappeared from the Internet, my article on Non-Standard Starship Scuffles appears to have come in for some little criticism:

First, for having FTL in it; and

Second, for assuming that space battles will take place in open space, the commenter apparently not seeing any reason why they would ever take place except right next to whatever strategic nexus point they’re fighting over.

To a degree, on both points, I’m inclined to question the reading that gave rise to those comments because on the first, well, while there is mention of FTL communications with observation platforms to improve one’s longscan for tactical advantage, the ships themselves don’t – can’t – move at FTL speeds, and indeed, the entire rest of the article would be exactly the same if there were no such thing as a tangle channel.

On the latter, though, I first note this:

Reaching the inner engagement envelope implies either that one party is attacking or defending a specific fixed installation (such as a planetary orbit, drift-habitat, or stargate), or that both parties have chosen engagement. It is relatively rare for such battles to take place in open space otherwise, since in the absence of clear acceleration superiority, it is usually easy for the weaker party to disengage before entering their opponent’s inner engagement envelope. The only way to guarantee that an opponent will stand and fight is to attack a strategic nexus that they must retain control over.

…but let’s ignore that for a moment. Here’s why starship battles, whenever possible, are conducted in open space despite this, and why the inconclusive engagement-avoidance-and-retreat is also more common than the aforementioned at-nexus-point battle.

Because in space, a weapon once fired continues on until it hits something. Hopefully that’s its target. If it isn’t its target. hopefully it’s a clean-up fluffship, or something big and ugly enough not to care (like the star), or some Oort cloud object no-one cares about.

But the bigger the solid angle subtended by an object from the point of view of the fighting starships, obviously, the greater the chance that it’s going to be shot right in the face by misses, not to mention ricochets and debris. And the closer you are to an object, the greater the solid angle it subtends, by the inexorable laws of geometry.

This is why the defender has a strong preference for going out to meet the attacker, because letting what you are trying to defend get all shot up as a side effect of the process of defending it generally makes defending it in the first place somewhat moot.

This is also why many attackers have a preference for luring the defender out to meet them: because firstly, Omnicidal Maniacs aside, you may want to capture some of those defensible assets reasonably intact and avoid any unnecessary effusion of blood; and secondly, because being casual about smacking relatively fragile civilian habitats and inhabited planets in the backdrop with starship-class weapons is the sort of thing that leads to bad press, unwanted reputations, and awkward interviews in front of war crimes tribunals.

All of which is to say: naval strategists have a term for admirals who plan their defensive engagements at point-blank range rather than maintaining a healthy strategic depth. That term is idiot.

Two Minutes

The good thing about starship disasters is that they so rarely turn into catastrophes.

Which is to say, sure, you can kill yourself, and you get your crew and your passengers killed, and if you try hard enough, you can go hurtling out of the system into the deep black at ludicrous speed, even while glowing with enough hard rads that no salvor’ll want to touch your hull for the next hundred thousand years. But space is big, its contents are small, and dramatic screw-ups that manage to take out other people by the mucker-ton therefore require sufficiently extraordinary talent that the Fourth Directorate will be crawling all over the site even before the wrecker gets there.

That is unfortunately not the case with interface vehicles, where the gravity well and the atmosphere bend physics all out of shape.

And you are flying, let me remind you, a real starship. Not some dinky aluminum-balloon sounding rocket that will obligingly shred itself into confetti and fireballs if the launch goes wrong; you’re flying maybe 3,000 tons of titanium composite and cerametals – not to mention the hot soup – that will come down hard, and will not come down happy.

This is a problem.

It’s not a problem for long. Well, if you’re flying the vehicle in question, it’s a problem for even less long, but you know what I mean.

Most dramatic engine failures happen very quickly indeed – on the pad, or within the first seconds of flight – at which point the starport disaster team will be on hand to clean up both you and your mess. And if you can keep things running long enough to get to orbital altitude – even on a suborbital trajectory – the odds are good in any kind of developed system that someone has a tug or a powerful OTV that can meet you and drag you the rest of the way upstairs while you get on the horn and have an unpleasant discussion with your insurance carrier.

That leaves the couple of minutes in the middle. Too high and fast for the starport to assist you; too low and slow for help from on high.

So what do you do, in that situation, if your main drive is failing and the auxiliary isn’t kicking in and you’ve got a sad board on all your backups?

Make sure you have the other kind of backup.

See, they don’t leave handling that sort of situation up to the Flight Commander. They know the sort of people who become Flight Commanders, and that they’ll try to save their ship right up until the very last second after it becomes a major incident. As is right and proper, but does not lead to the optimal outcome in this sort of case.

And they don’t leave handling it up to space traffic control, either, as they come from the same kind of dedicated stock that will try to save their traffic up to the very last second, too.

It’s in the hands of one man, titled Downrange Safety, who sits in a bunker at the starport. He has a live feed of all the traffic control instrumentation, everything he needs to see when a launch or landing trajectory has gone grossly off-track and out of safety limits. He has priority “flammifer exigent” access to the orbital defense grid, and to the starport’s launching lasers, and to anything else that might be useful.

He has a fully-automated system with executive authority to blast any incipient disasters right out of the sky, and he has a button which holds that system’s fire.

For three seconds at a time.

And that’s why I don’t fly interface vehicles.

– Svínif Kalyn-ith-Kalyn,
Sailing Master,
former Downrange Safety at Anniax Interplanetary, 6022-6167

Lowari-class pinnace/shuttle

Yes, that means it’s bad sketch time again here at the Eldraeverse… so here, have an interface vehicle.

LOWARI-CLASS PINNACE/SHUTTLE

Operated by: Various starports and near-orbit stations; capital ships.
Type: Pinnace / shuttle (belly-lander)
Construction: Llyn Standard Manufacturing, ICC & various licensees.

Atmosphere-capable: Yes.
Gravity well-capable: Yes.

Personnel: 3 nominal, as follows:

Flight Commander / Sailing Master
Flight Engineer
Purser / Cargomaster

(Can operate with a single pilot.)

Passenger capacity: 24.

Drive: 2 x Jetfire Technologies trimodal NTRs
Propellant: Hydrogen slush
Acceleration capacity (nominal load): 4.3 G
Delta-v reserve: 18,300 m/s

Drones: None.
Sensors: Standard navigational suite.
Weapons: None as standard. (Militarized version can mount turreted point-defense lasers above and below the bridge.)

Other Systems:

Auxiliary power reactor (thorium pebble-bed).
Navigational kinetic barrier system.
Regenerative life support (atmosphere only).
3 x Bright Shadow flight computer systems
Small vector-control core and associated technologies.
Integral radiative striping.

20150603_060009749_iOSAs can be seen from the picture, the Lowari-class is a very simple surface-to-orbit-and-back ship; flying-wing in form factor, with the entire habitable space occupying the center of the wing area, with fuel tanks outboard of that on each side, and the trimodal NTR engines on each wingtip. Flight control is primarily provided by thrust vectoring of the NTRs, but aerodynamic control surfaces and small attitude-control arcjets back this up.

The livable area exists on one single deck, which doesn’t include much in the way of dedicated machinery space; the machinery is squeezed into spaces behind access panels, primarily into the subdeck and behind the bulkheads of (in particular) the cargo hold. The largest of these are two dedicated avionics spaces (labeled AV) at the back of the cargo hold.

The for’ard half of the livable area is the passenger deck. As the ship’s not intended for long-term habitation, this means seats, not cabins;  large, comfortable, recline and put-your-feet up, quite-able-to-take-a-nap in leather seats with assorted luxury accessories, certainly – at least in the version they sell in Imperial markets, travelling like a gentlesoph and all that – but seats nonetheless. Three rows of four each to port and starboard; a total of 24 passengers.

This passenger area’s semi-divided by structures amidships. Going all the way floor to ceiling at the aft are two small compartments; a ‘fresher and what is, on the civilian model, a galley for serving drinks and snacks. (Military models may or may not keep this.) Ahead of that, and half-height, bearing in mind that the wing gets fatter towards the leading edge, is the airlock. It’s a fancy model with two operating modes: it has a conventional for’ard outer door designed to dock with other craft, but the floor also functions as an outer door; it’s designed to descend as a boarding ramp/boarding elevator when the Lowari is on the ground. (It can, of course, function as an actual airlock, even though the Lowari almost never does anything in space other than dock to/land in a bay of a larger craft.)

The flight deck is in the same compartment (indicated in green); it sits atop the airlock on a small platform of its own, where the three crew share one long console. It’s accessible by a long gallery leading to stairs on each side of the ship.

The leading edge of the Lowari‘s for’ard compartment, incidentally, is configured as one enormous picture window, because it’s not flying if you can’t enjoy the clouds on takeoff, the beautiful panoramas of space while in orbit, and the sheath of outrageously hot plasma trying to get in and incinerate you all on re-entry. Indulgent pilots may let well-behaved passengers come up and stand on adhere to the gallery to get a good view once they’re safely in orbit.

The aft compartment (accessible in-flight by doors to port and starboard) is the cargo bay, capable of housing eight or so standard cargo containers or an equivalent amount of breakbulk (including, say, the passengers’ effects). While said effects and suchlike are usually taken off via the bow airlock, there’s a large spacetight cargo door to aft/dorsal to allow large cargo to be loaded and unloaded. In space, this is often done by workpods, and the cargo bay is designed to depressurize for this purpose. (Conveniently, this also lets it serve as a backup airlock, if needed.)

Don’t go to space any other way!

The Kalantha: Revealed

So, the Kalantha-class frontier trader. The iconic ship of the small traders of the Expansion Regions. The commonly found – maybe a hundred thousand built – everysoph, jack-of-all-trades ship that needs only minimal external support and can function in any of a large number of roles. Needs only a tiny crew. Easy to keep running forever, if you’ve got a Flight Engineer who’s even half awake.

The Firefly-class of its ‘verse, one might say.

KALANTHA-CLASS FRONTIER TRADER

Operated by: Free traders, especially in outer regions, primarily Empire and allies.
Type: 
Atmosphere-capable multipurpose free trader.
Construction: 
Islien Yards (original); now licensed to multiple manufacturers.

Length: 42 m (forward hull); 96 m (propulsion bus)
Beam: 
16 m (forward hull diameter, not including radiators)
Loaded mass:
 [xxxxx]

Gravity-well capable: Yes (forward hull only).
Atmosphere-capable:
 Yes (forward hull only).

Personnel: 4, as follows:

Flight Commander
Flight Executive / Cargomaster
Flight Director / Sailing Master
Flight Engineer

Thinker-class AI.

Drive (forward hull): 3 x Jetfire Technologies trimodal NTRs
Drive (propulsion bus):
 Nucleodyne Thrust Applications 3×1 “Sunheart IV” fusion torch.
Propellant:
 Deuterium/helium-3 blend.
Cruising (sustainable) thrust:
 6.0 standard gravities (6.4 Earth G)
Peak (unsustainable) thrust:
 6.2 standard gravities (6.6 Earth G)
Delta-v reserve:
 [xxxxx]
Maximum velocity:
 0.1 c (based on particle shielding)

Drones:

4 x off-the-shelf camera/maintenance drones

Sensors:

1 x standard navigational sensor suite, Cilmínar Spaceworks

Weapons:

None.

(Well, technically.

On each outer engine fin, the Kalantha-class has a hardpoint for aftermarket… freight handling equipment. Yeah, that’s the ticket. Freight handling equipment.

If you’re registered somewhere with halfway civilized attitude to shipboard arms and flying either likewise or in free space, then there’s absolutely nothing to stop you from ordering up a couple of mass drivers and mounting them here. Hell, the shipyard you get the ship from will be happy to do it for you. You would still be incredibly ill-advised to get your Kalantha into a scrap with anything resembling a real warship, but it is often sufficient to divert would-be pirates towards freighters registered in enforced-helplessness regimes.

If, on the other hand, you’re venturing into some of those and they’re inflexible when it comes to enforcing their law on visiting starships, there are any number of small yards offering genuinely innocent items of equipment that can be mounted to these hardpoints and yet which will make a nasty dent in a would-be attacker with just a few disabled safeties, simple mods, and trivial software changes, which they will be more than happy to instruct your engineer in how not to do accidentally. Be creative!)

Other Systems:

  • Cilmínar Spaceworks navigational kinetic barrier system
  • Biogenesis Technologies Mark VII regenerative life support
  • 3 x Bright Shadow EC-720 information furnace data systems
  • Islien Yards 2C vector-control core and associated technologies
  • Systemic Integrated Technologies dual-mode radiator system
  • 3 x modular hardpoints

Small craft:

1 x Élyn-class modular microcutter, in forward-mounted hull-pod (without module; modules can be stored in main hold)

DESIGN

If you were expecting something as sleek and shiny as the Drake, sorry. The Kalantha works for a livin’. (Well, okay, actually it is quite shiny, despite being lived-in – and won’t it be fun to try and achieve those two visual effects at the same time – due to the wonderful nanotech-type maintenance procedures. Sleek, on the other hand, less so.)

The Kalantha needs to be able to operate within gravity wells, in atmosphere, and otherwise across the interface line, because its explicit design goal is to service worlds that don’t necessarily have highports, and certainly don’t have developed starport facilities. This is, unfortunately, sadly in contradiction to its other design goal of being a good, efficient interplanetary/interstellar craft.

The Kalantha squares this circle as best it can by being two ships in one; an atmosphere-capable, landing-capable forward hull that doubles as the interface craft, and a propulsion bus that holds the fuel and drives necessary for interplanetary travel that can be left parked in orbit while the forward hull lands and goes about its business.

FORWARD HULL

The forward hull of the Kalantha is the classic just-on-the-cone-side-of-cylinder-with-a-rounded-top – bullet-shaped, you might say – tail-lander hull, with a few minor variants. It has three modest radiator fins (the low-power radiators) extending from it, 120 degrees apart, one of which – the one with the yellow navigation light – we shall designate as indicating the arbitrary dorsal direction of the ship. Each of these fins, in turn, terminates at a vectorable engine pod, complete with iris-domed intake at the for’ard end and cascade vanes at the after end, housing one of the three trimodal NTRs which drive the forward hull when operating in uncoupled mode. Outboard of those are reaction-control assemblies, navigation lights, and the hardpoints.

On the opposite side of the ship, the arbitrary ventral, and filling most of the space between the other two radiator fins, are the two sets of cargo doors, opening on the lowest two decks; between the two doors is the eye of a tractor-pressor emitter to assist in loading. The lower of the two cargo doors comes complete with an extending ramp and a small “postern” door built into it for sophont boarding without having to open up the whole thing. Above both doors, on the next deck up, there’s a small streamlined structure taking up about a third of the inter-fin space in the center, with a rounded for’ard and 45-degree after cut-off, with windows facing out and down; that’s the quarterdeck/cargomaster’s office, situated where it can keep an eye on loading and the ground airlock.

Right up top, two symmetrical, cylindrical towers rise from the hull at the dorsal and ventral, each ending about a meter short of the bow. The one at the dorsal side has more than a few antennae and other communication widgets attached, and is topped by a circular dome window; the one at the ventral does not, and ends in a domed iris-opening. The rounded bow of the ship is a geodesic dome-window, stellarium-style; right in the center of this, where the axial shaft (see below) terminates at the bow, is a for’ard airlock for in-space use.

The rounded base of the ship, in uncoupled flight, is covered by a folding, iris-style heat shield. When retracted, this covers both (around the edges) the ship’s ruggedized landing gear, and (in the center) the coupler that connects it to the propulsion bus; including an aft spacetight door (not a full airlock) where the axial shaft ends, along with internal linkages for life support and fuel transfers, along with redundant power and data bus connections.

INTERNAL LAYOUT

The internal layout is also classic tail-lander. The layout is arranged to function under gravity – whether planetary gravity or thrustdown in either coupled or uncoupled mode – but the ship’s systems are designed to function equally well in microgravity. Whether it does or not, well, that’s up to the taste of the individual crew.

The Kalantha-class is a nominally seven-decked ship, with all decks linked by an axial shaft running through the ship from bow to stern along the thrust axis, from the airlock at the bow (used to dock when in space) to the spacetight door aft that connects to the propulsion bus. The shaft contains a spiral stair running from one end of the ship to the other, and an elevator platform likewise; in microgravity, of course, you can simply float up the shaft. The shaft walls, apart from primary structural members, also contain the main power and data buses.

The lowest – or aftmost – two decks are the cargo bay; each level, as noted above, having its own cargo door to ventral. The cargo bay can function as either one deck or two; the only permanent structures on the second level are access catwalks, but the structure is designed to accept gratings which clamp into position between the catwalks, converting it into a true second deck. (This is common practice if you’re transporting small breakbulk rather than containerized cargo or large breakbulk.)

The next two decks are the engineering space; again not physically separated except for the second-level catwalks. The majority of the ship’s machinery is concentrated here: the vector-control core, the gyros, the auxiliary power reactor, the life support systems, the robot hotel, and the bunkerage and other tanks. The lower engineering deck also contains the above-mentioned quarterdeck at its ventral edge; the bunkerage is clustered around it and the corridor leading there from the axial shaft to cut down on machinery noise.

The top three decks are all sophont-oriented. The lowest hosts a small workshop space, two ‘fresher, and (usually) six modest cabins; enough for the crew and a couple of passengers. (Kalantha-class ships expecting to or chartered to carry more passengers usually handle the situation by installing some containerized people-pods and auxiliary life support down in the cargo bay.)

The next is the base of the two bow towers. To dorsal, the tower base holds the computer core and avionics equipment; its windowed extension bow-ward hosts the bridge/conning station. (Often, this is only manned during maneuvers; routine systems management can be done from almost anywhere on board.) To ventral, the tower serves as a (close) bay for the ship’s Élyn-class microcutter. Most of the rest of the deck is divided between the ship’s locker, galley, and medical bay, surrounding a small central common area.

And the small topmost deck, beneath its stellarium dome – again providing the vital service of stopping people from going tin-can crazy – is in its entirety the ship’s primary common area. Small inter-deck openings surrounding much of the central shaft provide convenient accessibility to the small central common area on the lower deck.

PROPULSION BUS

By comparison, the propulsion bus is very simple in layout; it begins with a broad, stubby truss to which the various auxiliary machinery of the propulsion bus is clamped; inside this right at the front end is mounted the small maneuvering pod, which combines a small piloting station for the propulsion bus alone with some of its diagnostic and avionics equipment, and a rear airlock permitting access down the truss. A for’ard spacetight door matches up with that at the stern of the forward hull when the ship is coupled. This region also contains the extendable remote antenna that permits the propulsion bus to be remotely controlled when it’s uncoupled.

Internally, the maneuvering pod is very simple; the for’ard hatch/window permits one person to access the conning seat located immediately behind it. Turn the seat around, and further back in the pod are some racks of avionics and diagnostics, a minimal commode (which flushes stored waste into the forward hull’s life support system when the ship couples), a mini-fridge for rations and potables, and the canned life support machinery (which likewise flushes and recharges when the ship couples). Right at the aft end is an airlock leading out onto a ladderway down the truss.

(Bear in mind that the maneuvering pod is never manned in normal operations; it exists only for (a) engineers while they’re running diagnostics or doing maintenance; and (b) when you’re landing somewhere that ain’t civilization in the strictest sense, and so you want to leave someone behind in the propulsion bus just in case any of the locals get clever ideas and need to be taught the Kzinti Lesson…

…they don’t mention that second application in the brochure, but they do imply it pretty well.)

Behind this the truss gives way to the structure wrapping the two giant spherical tanks containing the propulsion bus’s deuterium and helium-3 supplies; attached to the outer surface of this wrapping structure are the main high-power radiators for the fusion torch.

And then behind them is the shadow shield structure and the fusion torch itself.

 

Nelyn-class Deck Plan

20150328_231228194_iOSBecause I couldn’t stop scribbling during my final formatting pass, okay?

Main hull:

1. Flight deck, right for’ard, and not on either of the decks strictly speaking, since it’s in the nose of the craft in what amounts to a transparent dome. The pilot’s command seat is, essentially, centered exactly on the fore-to-aft drive axis. Openings above and below provide access to both decks.

2. The common area, on the upper deck, ending in the for’ard upper level module access. Includes two stacked crew pods (a) to port, for the crew to sleep; a smart-table (b) for miscellaneous work, administration, and recreation purposes, and (c) a galley and fab unit to starboard…

3. …for’ard of the ‘fresher.

4. Most of the lower deck is a single compartment, which includes avionics equipment and canned life support (to starboard) and racked stowage space (to port), although most of the port side is taken up by…

5. …the airlock, an unusual three-door design that doubles as the for’ard lower level module access as well as the boarding airlock and an airlock providing convenient access to the module volume when no module is installed.

Engineering hull:

6. The airlock/aft lower level module access provides access to the engineering hull when no module is installed. It leads into…

7. The engineering section, which is primarily a single large chamber. The upper deck only exists as a catwalk running around the perimeter of the chamber, and the aft upper level module access is a simple spacetight door that cannot be opened when no module is installed. Primarily notable in the engineering section are (a) the vector control core and reaction wheels, (b) the port and starboard auxiliary power reactors, and (c) the robot hotel, with scuttle access to the propulsion bus for external maintenance mechs.

(Note: The Nelyn uses canned life support because it’s basically a local ship; the vast majority of them in use are not in roles that require them to ever venture very far from a source of resupply. Those who’d like to use their Nelyn for a long interplanetary or even interstellar voyage, on the other hand, aren’t left out; they can simply plug in the “accommodation” or “luxury suite” module, say, that by design comes with its own regenerative life support and possibly even hydroponics…)

Nelyn & Élyn

2015-03-27Usually I prefer to avoid inflicting my dire drawing skills upon y’all, but what the hell, I’ll make an exception this once.

The diagram to the right is my quick size sketch of the aforementioned Nelyn-class modular cutter (in blue) and the Élyn-class modular microcutter (in green).

As you can see, the Nelyn is the big one, inspired by/a harder version of the Traveller RPG’s modular cutter; an interplanetary craft that’s the workhorse of the Empire; 8 m in diameter, and 48 m long in total; an 8 m main hull at for’ard for the flight crew, the 16 m module space; a 4 m engineering hull for sensitive machinery; and the 16 m propulsion bus at the back. The module space is bridged by three trusses 120 degrees apart, the dorsal one of which is split in the middle and folds back to allow module swapout. And there are lots of different modules for pretty much any purpose you can think of.

The Élyn is the smaller one, only 4 m in diameter and with a 6 m hull (including engines), optionally taking a 6 m cylindrical module in a rear-mount. It’s strictly a local-orbit craft without interplanetary capability (although it is capable of take-off and landing on many planets) – but the reason it’s drawn where it is is that there is a Nelyn module specifically designed as a cradle for the Élyn, letting an entrepreneur with the former make pretty decent money providing a taxi service for the latter on long trips…

Drake-class Frigate: Post-Hoc Modifications

Because despite this and this, there are always a few modifications once you actually start beating brass and doing detail work:

The 4 x “Slammer III” dual turreted mass drivers have become 2 x “Slammer III” duals and 8 x “Slammer III” singles, four up front, two in radiator-tip (wingtip) leading-edge mounts, and two rearward-mounted to protect the ship’s kilt;

The aft landing bay door is now dropped and replaced with two side-opening landing bay doors for’ard of the radiators, since the former would have required flying directly through the high-radiation zone of the torch drive and said thermal radiators to use; much easier to fly parallel and dock sideways. This, in turn, has enabled the transformation of the back of the landing bay into dedicated cargo/storage space, with said side doors being in an excellent place for loading when the ship is landed or docked.

And after consideration of the practical height of the landing bay vis-a-vis the size of the Nelyn-class modular cutter, I’m swapping it out for a pair of Élyn-class modular microcutters (a gig-sized craft); if you want a really pretty good visual reference for that, think of it as looking like a rebranded SpaceX Dragon V2, with the cylindrical module in place of the trunk.

Notes on the Schedule (At the Starport)

2+6:36 – CMS Istry’s Bargain
Procurer-class freighter; standard berthing; perishable-cargo priority.

2+14:48 – CMS Booze and Ores
Skoufer-class smeltership; bulk discharge berthing.

Please assign to bay 17-A; rock dust gets everywhere and 17-A is already overdue for cleaning.

– Elin Vidrine, Cargomaster

2+20:00 – CMS Fimry Dancer
Hariven-class free trader; standard berthing.

2+30:48 – CS Ashbourne
Drake-class frigate (routine patrol); requires bunkerage.

2-15:48 – VNS Equitable
Voniensa Republic Navy, Harrier-class destroyer; diplomatic transport; requires bunkerage and supplies.

Deny all shore leave requests except minimum required by draft treaty obligations; tensions are still running high.

– Coril Andracanth, Port Director.

2-6:36 – LS Sev Dal Taine
League of Meridian, Sens Maget-class freighter; standard berthing.

3+5:12 – DM Quaintly Quirky
D!grith Association, d!grianne-class free trader; standard berthing.

3+20:36 – Overwhelm
Rim Free Zone, unknown class, registered to mercenary free corps; standard berthing.

I’ll send one of the kaeth teams to meet them at dockside and say hello. Just friendly-like.

– Merian Vidumarvis, security shift supervisor

3-31:00 – CMS Lucrevault
Cheneos-class free trader; requests leave to sell speculative cargo at dockside.

Granted; assign lighter bay accordingly, please.

– Elin Vidrine, Cargomaster

3-10:36 – LS Sen Mal Murat
League of Meridian, Sens Maget-class freighter; standard berthing.

3-4:10 – CMS Ecdysiast
Pleasurable Company-class liner; passenger berthing.

Can we have them dock directly with the drunk tank?

– Merian Vidumarvis, security shift supervisor

No.

– Coril Andracanth, Port Director

Four extra squads and half a point on the ppO2 it is, then.

– Merian Vidumarvis, security shift supervisor

4+3:48 – MSS Frozenfire
Múrast Symbiosis, Icicle-class symbiont; standard berthing; cold-ammonia atmosphere.

4+12:00 – DM Immodest Profit
D!grith Association, d!grianne-class free trader; standard berthing.

No-one’s manifest is this clean. No-one’s. They’re smugglers. Have an inspection team remind them that they don’t need to smuggle anything hereabouts, but we like to see a full manifest anyway.

– Jynel Herrian, Imperial Customs

4+30:36 – CSS Watchful Vagabond
Far Traveller-class explorer; standard berthing and AM bunkerage.

Plat indicates they came in from the Periphery; exercise extra care in lifeform scans and quarantine procedures.

– Jynel Herrian, Imperial Customs

4-22:12 – NTS Node Crash
Nsang Interactate, Host-class postal carrier; small ship berthing.

4-10:36 – CMS Demand Led
Cheneos-class free trader; standard berthing.

4-4:00 – IS Winter Harmony
Tranquil Repose-class cryo-colonization transport; bunkerage only.

5+0:00 – PNN 0110111011100111
Photonic Network, Doubleword-class polis; infomorph passenger berthing; extra bandwidth requested.

5+11:00 – VSS Star of Rasél
United Viridian States, Solar-class liner; passenger berthing.

5+22:36 – SG His Eye Watches
DISTRESS/SALVAGE; Theomachy of Galia, Attribute-class freighter; reports severe engine damage, under tow; standoff berthing.

Whatever their actual distress situation, I recommend finding some excuse in it for a full inspection. The Submission-class is a common slave-ship variant of the Attribute-class, and they certainly won’t admit to being one of those in our space. We’ve been handed a chance to catch those bastards at it!

– Jynel Herrian, Imperial Customs

Approved, but be discreet. I want a caught-slavers diplomatic incident, not any other kind. And don’t space anyone without checking with me first!

– Coril Andracanth, Port Director

5+31:36 – QRS Liraz’s Orchard
Quave Republic, Firstfruits-class subsidized trader; standard berthing.

5-30:00 – DM More Than Gold
D!grith Association, d!grianne-class free trader; standard berthing.

5-27:00 – CMS Pentagonal Deal
Gallen-class freighter; standard berthing.

Tell Captain Madel he still owes me lunch and a new docking arm. I don’t insist on the lunch.

– Coril Andracanth, Port Director

– from the scheduled arrivals board, Cairen High Port space traffic control

The Drake: Revealed

So let’s talk about the layout of that mainstay of the Imperial fleet, the Drake-class frigate. (The numbers are for deck plans. My own sketches are far too horrible to publish, but… well, there they are.)

External

Like most starships, one could conveniently divide the Drake-class into a pressure hull and a drive bus. It’s a little harder to spot the connection than it is on many ships (like, say, the Cheneos-class freighter) because of the armor, but it’s still there.

The pressure hull is, essentially, the front half of the ship, a round-fronted, slightly-flattened cylinder, for the most part unbroken in its organic curves except for the few openings (stellarium, gun port, airlocks) mentioned below, for the six geodesic spheres – three on each side, arranged fore-to-aft along the mid-line – clamped to the hull, which contain redundant sensor suites, best not placed inside the armor, the four paired cheek-mounted light mass drivers to for’ard, the ship’s secondary weapons, and an antenna suite projecting from the dorsal pressure hull near its after end.

Behind this, the pressure hull stops, but the armor which covers it continues on past the aftmost pressure bulkhead, broadening the hull to port and starboard even as it narrows into the starship’s stubby “wings”. (Which are of course not wings – they’re the secondary radiators; double-sided radiative striping under transparent light armor, encapsulating more bunker space. These are considered the secondary radiators because they’re designed to carry only the life-support and low-power heat load.) The armor back here serves as a cowl wrapping around the propulsion bus, which is the usual tangle of structural trusses, cryocels (for the ship’s limited supply of afterburner antiprotons), spherical and cylindrical tanks (for deuterium/He3-slush fuel and heat-sink goo), auxiliary machinery, and at the aftmost end of that (such that the bunkerage provides additional shielding for the crew), the fusion torches sticking out the open back of the cowl.

(This is, of course, a weak spot in the starship’s armor, but such would the drives be wherever you put them. In practice, the argument goes, when you’re in the furball – well, million-degree drive plasma provides a poor approach vector even for a kinetic weapon, and when you’re not – well, just watch where you point your kilt, okay?)

The external parts of the primary radiators sit on top of and below the cowl; they’re liquid-metal droplet radiators, which extend perpendicular to the secondaries when in use. They’re intended to support full power-and-some-more on the reactors, such that you can make a fast retreat and chill down your heat sinks at the same time.

The lowest deck extends, squared-off and flat-bottomed, a little below the main body of the pressure hull and extends back some way below the cowl; as the large doors at front and aft would indicate, it’s the landing bay.

The hull itself is gorgeous in shimmering military indigo; naturally, leading edges and other salient points are highlighted in intricate swirls of embedded gold-filigree brightwork, just because the IN can and wishes to emphasize that small point. (Close inspection will also note the apertures of attitude-control system thrusters, especially to outboard for the largest moment arms, and scattered black, glassy domes concealing the point-defense laser grid.)

Internal

Internally, the Drake has five decks dorsal-to-ventral. It uses the classic belly-lander arrangement because it’s considered possible to land a frigate planetside, or at least small-planet-side, or operate in atmosphere. (In the latter case, under the “with sufficient thrust, pigs fly just fine” principle.) Frigate captains rarely want to, though.

Despite that, there’s no artificial gravity on a Drake; while in space, the starship operates in microgravity.

Communication between decks is provided by a pair of elevators/shafts running between decks 1 to 4, and a staircase providing access to deck 0, along with various maintenance ladderways and such (especially in engineering). The elevators don’t run under microgravity conditions; they’re only for use under gravity. Rather, the elevator car is open-topped and is locked down on deck 4 in flight, allowing the shafts to be used as any other passageways.

As far as possible, auxiliary machinery, further storage tanks, etc., are wrapped around the outside of the ship, between the decks and the hull, to use as additional protection in the event of an armor-penetrating strike.

Deck 0

Deck 0, “the loft” is the smallest deck, squeezed in between the ceiling of deck 1 and the hull. Fortunately, it contains (for the most part) spaces which will be unmanned at general quarters or higher readiness states.

Specifically, at the fore end, there’s (1) the captain’s cabin, including a small office and private ‘fresher, from which a central corridor runs aft past (2) and (3), VIP staterooms which include the ‘fresher but not the office, ending at (4) the auxiliary sensory and communications room (approximately beneath the antenna suite mentioned above. Outside this room, a foldaway spiral staircase (i.e. serving as a microgravity shaft in flight) descends to the main corridor of deck 1.

Deck 1

Deck 1 is the first of the three “main” decks of the pressure hull.

Starting from the for’ard end, we begin with (5) the stellarium, which is literally the only room on the ship with windows, of which it has a continuous strip around the periphery and overhead. It also, being intended to entertain visitors and provide somewhere to get away from inside for a moment, comes with comfortable microgravity-adaptive seating, a few potted plants, and a wet bar.

More important for military purposes, while the windows are tough, they aren’t that tough, and as such the armor layer passes comfortably behind it, and access is through a sequential pair of spacetight doors. Naturally, it’s unmanned at general quarters or higher.

Behind this, another central corridor runs aft past (6), a conference lounge to port, and (7) an office for ship’s business – usually the Flight Administrator’s domain – to starboard, reaching the for’ard entrance to (8) the bridge/CIC, which takes up the full width of the ship in the center of the deck.

The aft entrance to the bridge/CIC opens into a second central corridor, this time passing (9), the server room containing the ship’s primary “dumb” servers and avionics systems to port, and (10), the ship’s AI’s cogence core and primary mentality substrate to starboard, terminating in a five-way junction containing the access to deck 0. To port and starboard, a cross-corridor terminates at the elevators/shafts, each with a ‘fresher located adjacent; aft, a door provides access to (11) the maneuvering room, in the form of a well-insulated gallery overlooking (12) the engineering space, which spans all three main decks.

(Secure backups for the cogence core and the substrate also exist buried in the middle of the propulsion bus section.)

Deck 2

Deck 2 is the central deck of the ship, and to a large extent is divided into two non-communicating parts. As a frigate, the Drake-class is built around its main gun, which occupies the axis of the ship and thus the center of the deck. While access is possible to the mass driver chamber (which can even be pressurized, with the gun port in the bow closed, for maintenance), it’s normally kept evacuated and is not, in any case, a very comfortable place to be.

The mass driver runs down the center of the deck from the gun port at the bow to (13) its “breech”, which sits directly against the engineering space bulkhead. Straddling it on either side are (14), the magazines for its k-slugs, which are also kept evacuated under normal conditions for ease of autoloader operation.

Starting this time from the aft end of the ship, at far port and starboard against the engineering bulkhead are the elevators/shafts and the associated adjacent ‘freshers, and the accesses directly to the engineering space. Corridors lead forward from these against the inner hull until they pass the magazines, at which point they turn inwards to reach, and proceed to the bow against, the central mass driver (for ease of accessing the driver coils for maintenance from these corridors).

On the port side, the majority of the space for’ard of this corridor is given over to (15) the medical bay, and at its for’ard end (16), the nano/cryostorage unit, used both for patients in need of return to fuller hospital facilities and doubling as the ship’s brig.

(It should be noted that the medical facilities are quite limited; the nature of the space combat environment is such that the window between “fine” and “chunky salsa” is quite narrow, and as such the medical bay is oriented more toward treating illness and minor injuries among the crew than it is to handling massive combat casualties.)

On the starboard side, the equivalent space is used for (17), a combined laboratory, workshop, and engineering support area.

The remainder of the space for’ard of these, behind the avionics area at the bow, contains the equivalent of two small rooms on either side (18, 19, 20, 21), connected by double spacetight doors; this is the modular function area. With sufficient engineering support and at a yard, these independently-encapsulated areas are designed to be disconnected from the ship’s infrastructure and framework, pulled out as a whole – along with their associated outer-hull plate and armor – and replaced with other modular capsules of equivalent specification. This feature permits the Drake-class to be customized for special functions – such as the electromagnetic radiation shielding we saw at the Battle of Eye-of-Night – much more flexibly than would otherwise be possible.

As mentioned, main access to the (12) engineering space is on this deck, although catwalks lead up and down to the lower level and to the maneuvering room gallery. The nearer part of the engineering deck contains a variety machinery, although also housing to port and starboard the two auxiliary fusion plants used to provide power to the starship when the drive is shut down. Beyond it, a half-octagon wraps around the bulk of the vector-control core and the reaction wheels, containing in their own sections the (22) life support systems to port, and the (23) robot hotels for the ship’s mechanicals to starboard.

Amidships between these, a small airlock and external robot hotel provides access to an unpressurized maintenance crawlway running through the propulsion bus. Normally, this is only used by robots or for occasional yard maintenance; radiation levels are unhealthy back there with the drive running, to say the least, but access may be necessary in emergencies.

Deck 3

Deck 3 is primarily the crew deck. At the for’ard end, along the centerline, is the (24) mindcast receiving room, allowing visitors received as infomorphs to borrow one of the ship’s spare bodies for the duration of their visit; aft of that, a cross-corridor links the (25) port and (26) starboard airlocks, each of which is accompanied by a small conning station (usually disabled) for use while docking.

Aft of that, another small room serves as a quarterdeck/reception area and security post. From there, a central corridor leads aft through the (27) crew quarters – the corridor itself is lined with access hatches to what are, in effect, double-sized personnel capsules – to the (28) comfortably furnished mess deck, which incorporates a (29) standing galley to port, and the (30) ship’s locker to starboard. Beyond the mess deck, hatches to port and starboard – a design choice permitting a large screen to be mounted on the mess deck’s after bulkhead – lead through inner-hull-hugging corridors past the (31) accumulator room to port, and the (32) auxiliary control room and (33) a small gymnasium to starboard, to another cross-corridor against the engineering bulkhead, providing access to the elevators/shafts and the ‘freshers on this level. However, there is no routine access to the engineering space on this deck.

Deck 4

Deck four, slung beneath the ship, is primarily its (33) landing bay; one large space, extending fore to aft. Space is reserved at port for the (34) armory, used to equip shore parties if necessary, and at starboard for a (35) second workshop space. These are each located for’ard of the elevators/shafts which open into a small hallway offering access both to these, and to an airlock opening into the landing bay. There are no associated ‘freshers on this deck.

A Drake-class frigate is typically equipped with a single cutter, an interface vehicle, or both; the relatively large landing bay permits it to also store the frigate’s complement of drones, and to serve as a cargo bay to such extent as space permits. Overhead manipulators permit vehicles to be moved to engage with either the fore or aft mass catapult for launching, reshuffling of the cargo, or retasking of the cutter, as desired.

Flight operations are handled from the bridge/CIC. The bay can be pressurized with both doors closed, but at general quarters or higher readiness states operates unpressurized to expedite operations and avoid unnecessary risks.

(For those paying attention to the implications: yes, the very same vector control tech that lets you make kinetic barriers lets you make nice air curtains that would hold air in even with the door open, while still letting you fly in and out. [Well, mostly: for molecular statistical reasons, they leak, but it’s manageable.] Some civilian ships use those for the convenience. Military ships prefer not to have unexpected depressurization incidents when someone gets a lucky shot in on the emitters when they don’t have to. Sure, it’s a pain to have to wear a skinsuit all the time, but you’re in the Navy now! Also, you’re less likely to get brained by a flying spanner if there were to be a curtain oops.)

Trope-a-Day: Mile-Long Starship

Mile-Long Starship: Some bigger classes easily fall into this category or above: dreadnoughts and superdreadnoughts, grapeship megafreighters, the top end of highliners, colony seedships, mobile factories, that sort of thing, and – of course – city-ships.

Special note here to most lighthuggers, which have to accommodate vast quantities of deuterium and antideuterium and whose antimatter-pion-torch engines are so ridiculously lethal to be near that you want them on the end of a very long spine indeed.

Run Silent, Run Drunk

Deep recon and forward scouting is the job of the recon destroyers. And contrary to “Running Cold”, it’s not a particularly stealthy job. For all the boffins dream about stealth starships and talk airily about basement universes and domain walls and dimensional transcendence, I’ve never seen one. And no, that’s not a joke.

The aim is not to avoid being seen. They can see you, bright, hot, and clear. (It’s not all bad – this also means that you can see them.) The aim is to be seen sailing through the target area fast and high and out of the way – beyond intercept range and outside their engagement envelope – so they can’t touch you. Except for exchanging the usual bluster.

Not that that stops people from taking a pot-shot or two at you anyway on general principles. So you jink, jink, jink and trust to light-lag! But all that drunkwalking cuts deep into your delta-v reserve for evading and running, which is why they give you a whole library of variable-power drunkwalk algorithms, from a pro-forma wobble on the reaction wheels up through the affectionately named Torpedo Tango, Missile Minuet, Warhead Waltz, Firing Solution Foxtrot, and so forth, right on up to the good old Hellfire Hop. Choose carefully, ‘cause you might need whatever you burn now later. And if you’re really worried, you can fire up the kinetic barriers to military power – if you wouldn’t rather keep that energy to go into thrust, and if you don’t mind being provocative by shining the EM signature of a battle-ready warship all over the system. Any misjudgment at this point may result in a salvo or two of unanticipated k-slugs ripping big holes in your ‘can.

This is why every recon captain I ever served under had an ulcer and the temperament of a grouchy bear.

– Senior Chief Viviré Galicios, Imperial Navy (unpublished memoir)

 

Ask Dr. Science: Starports

Today’s question for Dr. Science is, “What are starports for? Lots of starships call at my hab, and we don’t have one.”

Starports and starships have surprisingly little to do with one another.

If there were only starships and drifts, and perhaps the odd rock, we’d have no need of starports. The starships could simply pull up alongside their destinations and shift their cargo about with longshorebots and lighter OTVs and a few stout lads working out of docks and locks. Running a few insulated lines would take care of fueling, and in this scenario, no doubt the passengers – spacers all – would be happy enough to take a walk over. And outside local space, no-one cares where you heave to.

No, starports exist because the galaxy is full of planets, and because large numbers of people are perverse enough to want to live on them. (See my earlier column, Yes, They Store Their Air On The Outside (And Why We Can’t).)

They do have lots of facilities for starships associated with them – cageworks, chandlers, refueling depots, orbital warehouses, freight transshipment nodes, and suchlike – because it’s often convenient to keep them together in a central location, and because it helps pay the bills. But what starports are actually for is solving the interface problem.

One of the less believable realities of space travel is that – on most highly populated worlds, other than a few moons – the depth of the gravity well and the thickness of the atmosphere is such that it takes every bit as much delta-v to climb from the surface into orbit and as it does to make transit between a system’s worlds. The depth of the well and the passage through the atmosphere impose even more constraints on the structural strength and hull forms of starships, in ways that handicap them for operation in the space environment; most starships that are in operation today could neither support their own weight at the bottom of a planetary well, nor withstand the rigors of atmosphere entry. The need to transport freight and passengers between these two disparate environments is the essence of the aforementioned interface problem.

And so starports straddle this line, possessing both a dirtside half (the Down, or downport) and an orbital half (the Orbital, or highport), each composed of a variety of specialized facilities in close formation. The Orbital houses many starship service facilities, but the majority of its business is transferring freight and passengers to and from its counterpart. Except for relatively new colonies and those worlds with the wealth and traffic volume to support a space elevator (or more than one; Seranth has six elevators supporting its ring-city), this falls into a familiar pattern.

Freight is simple enough. Some worlds opt for pure mass-driver launch facilities, and some prefer laser-launchers, but wherever it can, the Imperial Starport Authority prefers to opt for the maximal efficiency of a hybrid system. Should you visit the freight terminal of any major downport, you’ll find it rather unimpressive in itself, despite the sheer size of the building, because it is merely the front end of an enormous mass driver – miles in length! – or array of mass drivers, ending at the peak of a mountain high enough to get the muzzle of the drivers above the thickest part of the planetary atmosphere – and if no mountain is conveniently located for the starport architects, an artificial one will be constructed for the purpose. Around the muzzle of the mass driver, a complex of gigawatt-range phased-array pulse lasers provides additional power and control.

Every few seconds, a freight container is taken from the outgoing queue, and locked into place within a reusable aeroshell, which provides both the streamlining necessary to penetrate the atmosphere, and ablative remass for the latter part of its flight. This aeroshell is then loaded into the mass driver and accelerated up to orbital velocities, with the mountaintop array selectively lasing the ablative remass (pulsed plasma propulsion) to provide guidance and additional delta-v as needed. (The degree to which it is needed varies by cargo: heavy hardbulk can withstand high accelerations, and as such most of the acceleration can be provided by the efficient mass driver, whereas more delicate cargoes require gentler acceleration for longer, and thus proportionately more of the total delta-v is provided by the lasers.) Upon its arrival in orbit, the aeroshell is caught by the muzzle of another, rather smaller, mass driver, this time operating in reverse, and converting the aeroshell’s residual kinetic energy back into electrical energy. Once it has been braked into the receiving station, the aeroshell is stripped off and sent for reconditioning and refueling, while the container is dispatched to the incoming queue, and thence to the appropriate orbital warehouse.

Ground-bound freight follows the reverse process, being accelerated by the small orbital mass driver onto a re-entry trajectory targeted upon the muzzle of its groundside partner; on its way down through the atmosphere (it is designed to be stable stern-down for reentry), the laser array and ablative remass are again called upon to provide guidance and, if necessary, additional deceleration. Plunging into the barrel of the mass driver, the reverse process is again used to brake it to a stop at the freight terminal, where the aeroshell is again stripped off and reconditioned, and the container routed onward to its final destination.

These systems are often operated in pairs, enabling the efficiency of using the captured gravitational potential energy of freight moving downwell – captured by the mass driver to the greatest extent that engineering and thermodynamics permits – to partially power the ascent of upwell freight. As you can imagine, a pair of these systems sending and receiving containers every few seconds, every hour of the day, every day of the week, can move an awful lot of freight!

Passengers, though, are more fragile than most freight. (And rather less comfortable stepping into the breech of Heaven’s Own Sluggun, whatever the numbers might say.) They prefer to travel on shuttles, vehicles specifically designed to cope with the interface problem – with all that atmosphere in the way, you can’t just hop in a commutersphere or ride a candle!

But atmospheres aren’t all bad news. Given the depth of a planet’s well, you might expect that the shuttles would have to be huge lumbering ships to carry all the remass they needed to climb up to orbit; but since they spend so much time in atmosphere, they can use the atmosphere itself as remass, and only carry the little they need for the very end of their journey. Most shuttles have trimodal nuclear engines. They start out as simple tilt-turbine ducted fans when they leave the ground, until they can achieve the speed and altitude necessary to start using their reactors to heat the air directly, becoming nuclear-thermal scramjets, and this mode carries them up through hypersonic speeds to the very edge of space. At this point, before the air becomes too thin for them to function, they switch over to using their internal supply of remass, becoming true nuclear-thermal rockets until they dock with the highport and deliver their passengers. Refueling there, they land again using the same engine modes in the reverse order, and the cycle repeats.

It’s ironic, then, that the features most commonly associated with starports in the public mind – the enormous graphite-and-cerametal pads with their massive hidden cradles, the blast-deflecting berms, the “hot” shafts with their billowing wash-down sprays, and so forth – are those dating back to an earlier age of space, when planets truly were the center of civilization and mighty ships rose heavenwards on pillars of atomic fire, now sadly reduced to a minority of any starport’s business, handling a few special loads, private yachts, and those small tramp traders which service early colonies and outposts that cannot yet afford full starports of their own. But even they share this one commonality: a need to get to and from the planetary surface.

In the end, they’re all about the planets.

Dr. Science

– from Children’s Science Corner magazine

Trope-a-Day: ISO Standard Human Spaceship

ISO Standard Human Spaceship: They’re “realistic” designs, involving designing for microgravity, with nuclear engines out on the end of long trusses and no particular need to worry about aerodynamics or putting all your machinery inside the pressure hull, but —

1. They’re not painted grey or left as uncolored metal. This is not the ocean, there is no stealth in space, and there’s no real advantage to being a bland and neutral color. And while you could save some mass by leaving off the chameleon nanopaint, true, there is another consideration – namely, in close orbit operations, or while alongside a habitat, people can see you, and people who can afford private spaceyachts want them to look gorgeous, of course, but more importantly, everyone from Stellar Express to Constellation Dream-Lines spent a lot of money on their corporate color scheme and logo, and they want it splashed all over the hull in living animated Technicolor.  Half the captains in space don’t even turn the running lights off when they leave orbit just in case someone might be pointing a telescope their way.

(ISS and IMS ships are generally colored Imperial indigo, with gold trim.  Crimson striping is optional on those vessels operating under diplomatic privilege.)

2. Being visibly constructed from riveted plates is distinctly disfavored; rivets imply seams, seams imply weak spots, weak spots involve the possibility of messy vacuum-aided death. While it would be ludicrously inefficient to nanogrow an entire hull as one seamless unit, they do like to use nanopastes to make the seams go away afterwards. They do have the usual number of ports, sensors, and antennae attached in various places, though.

3. While you can certainly draw a box around them – and goodness knows a lot of less, ah, aesthetically sensitive species seem to think that the ideal shape for a freighter is a large steel box with an engine stuck on one end – it would be hard to describe a typical Imperial vessel as “boxy”. As soon as autofabrication made it possible to do grand, sweeping pseudo-organically curved shapes, naval architects dug their last few centuries of idle sketches of cool-looking but impractical ships out of the closet and ran with them, at least for civilian use – often in shapes that don’t enclose, but do conceal, all the heavy machinery and massive spherical fuel tanks and cryocels mounted on trusses outside the pressure hull. Or at least the bits of it that don’t look cool, while coyly revealing the parts of it that do. (And even the military ships aren’t all that boxy.)

And then, of course, there are the thermal radiators, which often resemble great curved wings of one kind or another when fully extended, even if they’re not solid (the most common radiator types are sheets of droplets extending from sprayer to collector).

4. For reasons explained elsewhere, there are no space fighters designed to be flown by meat. Such things have negative combat advantages and no survivability whatsoever.

(As a side note, while every bit as impractically fancy, in many cases, as the extensive brightwork of Royal Navy warships or East India Company merchantmen in the old tall ship days, the colorful paint jobs and excitingly sweeping shapes serve much the same memetic purpose: “we’re rich and powerful and successful enough that we can spend lots of time and effort on this stuff without impairing the basic functionality of the ship at all, so draw appropriate conclusions before startin’ something”.)